Создание бестопливного генератора энергии. Свободная энергия эфира. Самые известные способы генерации свободной мощности

Автотермия - это горение атмосферного воздуха без какого либо дополнительного топлива.В том числе и в камере сгорания автомобиля. Этот процесс был замечен давно, и хорошо известный автогонщикам. Мы нашли условия, при котором воздух горит сам по себе. Горение происходит вообще без дыма и с низкой температурой. Поэтому вредные выбросы в атмосферу исключаются, а сам двигатель не будет греться и изнашиваться.

В процессе испытаний обнаружилось, что очаг горения воздуха, при атмосферном давлении, ограничивается диаметром около 20 см. и представляет собой сгусток плазмы, которая очень похожа на шаровую молнию.

Этот шар обладает большим электрическим зарядом, излучает яркий свет, и имеет антигравитационные свойства, в виде вертикальной тяги, скорее всего ионного происхождения.Испытания не закончены, но уже очевидно, что двигатели будущего будут работать именно на энергии шаровых молний, как в этом кратком видеоролике Возможно двигатели НЛОработают именно на этом принципе.

Искренне надеемся, что в ближайшем будущем человечество забудет такие слова, какАЗС и бензобак.

Сейчас, в режиме автотермии, ездит всего не более сотни автомобилей в мире, этим уже никого не удивить. Но вотна энергии шаровых молний, земляне ещё не ездили. Похоже, мы будем первые. Конечно же, если всё получится удачно. :)

Кстати, для режима автотермии на автомобиль, надо всего лишь конденсатор поставить в параллель свечи зажигания, автоозонатор в забор воздуха, и если сухая погода - то ещё микроувлажнитель или Китайский генератор тумана на 12 вольт..

На фото -плазмоид, полученный из капли воды, разрядом конденсатора через влажную вату.Эксперимент проводился при обычном атмосферном давлении и влажности воздуха. Через 1 секунду плазмоиды исчезают бесследно. Повторяемость 100 %

Это является доказательством того, что Плазма и Телепортация - напрямую связаны между собой. Любой НЛО, прежде чем переместится в пространстве, сначала приобретает состояние плазмы. Здесь документальные факты телепортации ВИДЕО

Как известно, плазма - это кристалл, который сохраняет кристаллическую решётку всех атомных связей первоначального вещества. Если, например, на каплю воды посадить жука, муравья, мошку, или другую мелкую живность, - то она тоже превратится в плазму и телепортируется. Знать бы только куда????Надо маленький и мощный микро маячок, что бы « подковать им блоху » тогда может и удалось бы засечь, куда она переместилась. Конечно же, если перемещение происходит в пределах Земли…

И ещё. На последнем сюжете этого же ВИДЕО , хорошо видно, как появившийся из плазмы человек бросает в коляску два предмета, белого цвета, размером в пол кирпича каждый. А затем, после телепортации коляски, он забирает эти предметы себе в карман и спокойно уходит, как ни в чём не бывало. Вот эти два предмета в его руках, это и есть ключик к разгадке телепортации. Может это обычные конденсаторы большой мощности???Предлагаю попробовать! (Внимание! Эксперименты с конденсаторами- опасны для жизни!) И ещё просьба не мучить благородных насекомых. Для телепортации лучше всего подойдут полевые или садовые вредители, домашняя моль,тараканы, клещи, блохи, и т.д.

Электроэнергия помогает человечеству решать огромный спектры бытовых и промышленных задач, но ее выработка требует от человека постоянной затраты ресурсов. Наиболее эффективными на сегодняшний день являются топливные генераторы, которые используются на ТЭС, в мобильных моделях бензиновых и дизельных генераторов. Но развитие прогресса не стоит на месте – человечество постоянно пытается удешевить получаемую электроэнергию за счет внедрения инноваций. Одна из самых революционных идей – создать бестопливный генератор, который можно будет вращать без затрат ресурсов.

Что такое БТГ (бестопливный генератор)?

Сама идея относительно не нова, под понятием бестопливного генератора понимается устройство, которое будет вырабатывать электроэнергию без необходимости затрат ресурсов на вращение его вала. У основания этой идеи стояли такие выдающиеся ученные, как Тесла, Энштейн, Хендершот и другие. В те времена для запуска и работы генератора использовался пар, получаемый за счет сгорания какого-либо топлива, от этого и возникло название бестопливного.

В наше время уже не обязательно использовать топливо для получения электрической энергии. Ее научились генерировать из солнечной энергии, энергии ветра, рек, приливов и отливов. Но устройства, предложенные физиками-основателями электротехники, до сих пор граничат с научной фантастикой и продолжают будоражить воображение как именитых ученных, так и простых обывателей.

Принцип работы

Любое генерирующее устройство построено на принципе получения электрического тока посредством направленного движения заряженных частиц в проводниковой среде. Такой эффект можно достигнуть посредством:

  • Генерации переменного магнитного потока – когда в проводнике наводится ЭДС от магнитного поля извне;
  • Перетеканием заряженных частиц между средами с разным потенциалом;
  • Самогенерации – режим работы, при котором устройство увеличивает мощность начального импульса, что позволяет поддерживать его работоспособность и аккумулировать часть энергии для питания какого-либо стороннего потребителя.

Единственная причина, по которой не удается в полной мере реализовать подобный замысел – закон сохранения энергии. Чтобы получить какой-то вид энергии вам все равно необходимо затрачивать другой вид. Поэтому идея изобретения бестопливного генератора породила массу мифов вокруг этого вопроса и дала почву для авантюристов.

Миф или реальность?

Сразу отмечу, что великие умы создавали идею бестопливного генератора не ради коммерческой выгоды. Такими людьми, как Никола Тесла, Альберт Энштейн двигала вполне естественная жажда познания и стремление сделать этот мир лучше, а не банальное обогащение. Как свидетельствуют хроники их деятельности, им удалось добиться невероятных успехов. Многие из их достижений оставили после себя гораздо больше вопросов, чем ответов, что и дает повод нашим современникам продолжить дерзновения и научные соискания.

Причинной, по которой великие ученные не смогли реализовать свои изобретения, было несовершенство технологий или отсутствие какого-либо компонента, которые обеспечили бы стабильный результат. Наши современники в научных лабораториях и в домашних условиях пытаются воплотить нереализованные идеи создания бестопливного двигателя, иногда в научных целях, иногда с целью наживы. Но добиться желаемого и наладить производство бестопливного генератора в промышленных масштабах пока еще не удалось.

Из-за бурной деятельности аферистов в интернете вы встретите массу предложений купить бестопливный генератор, но работоспособностью эти модели не обладают. Как правило, недобросовестные изобретатели пользуются безграмотностью населения в вопросах электротехники, создают красивую упаковку и продают пустышку под заманчивым названием бестопливный генератор. Но это не значит, что рабочих схем не существует, рассмотрите примеры наиболее известных из них.

Обзор БТГ и их схемы

Сегодня существует достаточно большое количество бестопливных генераторов различной конструкции и принципа действия. Разумеется, далеко не все модели и принцип их действия освещались создателями для широких масс. Большинство бестопливных генераторов остаются тайной, свято оберегаемой создателями и патентами. Нам остается лишь проанализировать доступную информацию о принципе их действия и общие сведения об эффективности.

Генератор Адамса – «Вега»

Достаточно эффективный генератор магнитного типа изобретенный на основе теории выдвинутой ученными Адамсосм и Бедини. В основе работы генератора лежит вращающийся магнитный ротор, который набирается из постоянных магнитов с одноименной ориентацией полюсов. При вращении ротора создается синхронное магнитное поле, которое наводит в обмотках статора ЭДС. Для поддержания вращающего момента ротора на него подаются краткосрочные электромагнитные импульсы.

Промышленную реализацию данного принципа получил генератор «Вега», происходит от аббревиатуры Вертикальный генератор Адамса, который предназначен для электроснабжения частных домов, дач, судоходных приспособлений. За счет кратковременных импульсов на выходе создается пульсирующее напряжение, подающееся на аккумуляторы для зарядки, а с них инвертируется в переменное промышленной частоты. Но вопрос соответствия заявленных параметров его реальным возможностям достаточно спорный.

Генератор Тесла

Был запатентован известным сербским физиком более ста лет назад. Принцип действия заключается в наличии электромагнитного излучения в атмосфере Земли, в то время как сама планета представляет собой значительно более низкий уровень потенциала.

Рис. 1. Принципиальная схема генератора Тесла

Посмотрите на рисунок, бестопливный генератор Тесла условно состоит из таких частей:

  • Приемника излучения – изготавливается из проводящего материала, расположенного на диэлектрическом основании. Приемник должен обязательно изолироваться от земли и размещаться как можно выше;
  • конденсатор (C) – предназначен для накопления электрического заряда;
  • заземлитель – предназначен для электрического контакта с землей.

Принцип действия заключается в получении электромагнитной энергии приемником, которая начинает протекать по замкнутой цепи на землю. Но, из-за наличия конденсатора, заряд не стекает по заземлителю, а накапливается на пластинах. При подключении к конденсатору нагрузки произойдет питание устройства за счет разрядки конденсатора. Помимо этого конструкция может дополняться автоматикой и преобразователями для беспрерывного электроснабжения совместно с подзарядом.

Генератор Росси

Работа этого бестопливного генератора основана на принципе холодного ядерного синтеза. Несмотря на отсутствие классических турбин, приводимых в действие паром или сгоранием нефтепродуктов, для его функционирование вместо сжигания топлива используется химическая реакция между никелем и водородом. В камере генератора Росси происходит экзотермическая реакция с выделением тепловой энергии.

Следует отметить, что для нормального протекания реакции применяется катализатор и затрачивается электроэнергия. Как утверждает Росси, количество вырабатываемой тепловой энергии получается в 7 раз больше затрачиваемого электричества. Эту модель уже начинают внедрять для отопления участков и выработки электроэнергии. Но, так как для работы все же необходимо заправлять установку рабочими реагентами, совсем бестопливной назвать ее нельзя.

Генератор Хендершота

Принцип действия этого бестопливного генератора был предложен Лестером Хендершотом и основан на преобразовании магнитного поля Земли в электрическую энергию. Теоретическое обоснование модели ученый предложил еще в 1901 – 1930 гг, она состоит из:

  • электрических катушек, находящихся в резонансе;
  • металлического сердечника;
  • двух трансформаторов;
  • конденсаторов;
  • постоянного магнита.

Для работы схемы обязательно должна соблюдаться ориентация катушек с севера на юг, благодаря чему произойдет вращение магнитного поля, которое сгенерирует ЭДС в катушках.


Марк Хендершот, сын Лестера Хендершота представляет свой БТГ

Также в сети ходит и схема данного БТГ (рисунок ниже). Насколько она правдивая – я не могу сказать.

Схема генератора Хендершота

Генератор Тариэля Капанадзе

Наш современник утверждает, что открыл возможность получения электрической энергии из эфира, работая с катушками Теслы и продолжая исследования известного ученного. Бестопливный генератор Капанадзе состоит из катушки Тесла, блока конденсаторов, аккумулятора и инвертора, но эта компоновка лишь догадка, сам изобретатель держит конструкцию бестопливного генератора в строжайшей тайне.


Рис. 2: общий вид генератора Капанадзе

Посмотрите на рисунок 2, здесь приведен общий вид . Сегодня ходят слухи о попытке широкомасштабной реализации устройства для нужд потребителей в некоторых странах, но конечного результата им достичь так и не удалось.

Также по сети ходит и электрическая схема данного генератора (рисунок ниже). Но насколько она правдивая – мы сказать не можем.


Генератор Хмелевского

Согласно официальной версии бестопливный генератор Хмелевского был открыт случайно, так как создатель задумывал его как блок питания для преобразования постоянного тока в переменный. Но он нашел широкое применение в геологоразведке и получил широкое распространение в экспедициях, удалявшихся от источников центрального энергоснабжения.

Такой бестопливный генератор состоит из трансформатора с расщепленными обмотками, резисторов, конденсаторов и тиристора. Генерация электроэнергии происходит за счет особой конструкции самого трансформатора, который может создавать встречную ЭДС больше, чем на входе. Такой результат достигается за счет резонансного эффекта и применения напряжения определенной частоты и амплитуды.

Генератор Джона Серла

В основе бестопливного генератора Серла лежит принцип магнитного взаимодействия между сердечником и роликами. При котором магнитные ролики размещаются на равноудаленном расстоянии и стремятся сохранить свою позицию после приведения системы в движение. В состав магнитного двигателя входит многокомпонентный неподвижный сердечник, вокруг которого вращаются такие же многокомпонентные ролики. По диаметру вокруг роликов установлены катушки, в которых генерируется ЭДС при прохождении возле них магнитного ролика. Для запуска устройства применяются пусковые электромагниты, которые подают импульсы, приводящие в движение ролики.


Рис. 3: общий вид генератора Серла

Как утверждает Серл, ролики самостоятельно увеличивают скорость вращения за счет переменного магнитного поля, создаваемого за счет разнополюсного совмещения магнитов внутри роликов и внутри неподвижного сердечника. При изготовлении конструкции в три уровня скорость вращения приводит не только к выработке электроэнергии, но и снижает массу аппарата вплоть до антигравитационного эффекта.

Генератор Романова

Принцип работы бестопливного генератора Романова заключается в подаче стоячих волн на одну из пластин конденсатора, в то время как вторая пластина напрямую подключается к земле.


Рис. 4: принцип работы генератора Романова

Посмотрите на рисунок, здесь приведен принцип работы устройства, при подключении одной пластины к земле, на ней возникает определенный заряд. Стоячие волны на второй пластине обеспечивают генерацию потенциала, значительно отличающегося от потенциала земли. В качестве генератора стоячей волны выступают катушки с разнонаправленной намоткой, в которой вихревые токи компенсируют активную составляющую тока. После накопления заряда конденсатор может использоваться для питания электрических приборов в качестве нагрузки.

Но однозначного успеха для бытовых или промышленных целей в реализации данной модели добиться так и не удалось.

Генератор Шаубергера

Такой бестопливный генератор основан на получении вращательного момента на турбине за счет перемещения воды по системе труб и дальнейшем преобразовании механической энергии в электрическую. Для получения такого эффекта в конструкции генератора используется сквозной поток воды, получаемый от перемещения воды снизу вверх.


Рис. 5: принципиальная схема генератора Шаубергера

Принцип действия этого механического генератора основан на получении кавитационных полостей в жидкости – состояния разрежения близкого к вакууму, из-за чего вода приходит в движение не сверху вниз, как мы привыкли наблюдать в природе, а снизу вверх, что приводит в движение ротор электрического генератора и создает замкнутый цикл. Когда вода поднимается по внутренним трубкам вверх и опускается назад в исходный резервуар.

Можно ли сделать бестопливный генератор своими руками?

Многие из рассмотренных выше генераторов невозможно реализовать в домашних условиях. В одних случаях их авторы не предоставляют электрические схемы для общего пользования, в других, автономная работа заканчивается спустя какое-то время после начала генерации. Но существуют модели, которые вы можете попробовать реализовать в домашних условиях самостоятельно. Но никакой гарантии мы не даем. Это лишь попытка и одна из возможных реализаций.

Рассмотрим на примере изготовление бестопливного генератора Тесла. Для этого:



Рис. 9: измерьте заряд конденсатора

Как видите, бестопливный генератор Тесла действительно работает, и вы можете собрать его в домашних условиях самостоятельно. Основной недостаток – запитать от него получиться разве что светодиод, да и то на несколько секунд от силы. Мощность такого устройства зависит от площади приемника и емкости конденсатора. И если подобрать конденсаторы большой емкости еще представляется возможным, то создать приемник размером с футбольное поле, чтобы можно было бесперебойно питать хотя бы дом, достаточно проблематично.

Видео подборка по теме



Свободная энергия сегодня применяется не только в промышленности, но и в быту. Тема ее получения стала востребованной из-за того, что природные ресурсы не вечны, а использование старых технологий не всегда экономично.

[ Скрыть ]

Что представляет свободная энергия?

Термин «свободная энергия» в теории связан с несколькими деятелями:

  1. Гельмгольц. Свободная энергия Гельмгольца представляет собой термодинамическую величину. Ее снижение в изотермическом процессе соответствует работе, которая была выполнена системой над внешними телами.
  2. Гиббс. Энергия Гиббса представляет собой параметр, демонстрирующий изменение энергии в результате химической реакции.

По факту в данный термин вкладывается другое понятие. Это электроэнергия, которая появляется из ниоткуда либо дополнительная энергия сверху той, которая перетекает из одного состояния в другое. Это означает, что больше, чем должно быть, энергии не станет. Также к свободной энергии причисляется энергия Солнца, ветра и других источников по отношению к применению топлива. В качестве топлива могут использоваться нефтепродукты, а также уголь, дрова и любые другие материалы, подлежащие горению.

Схема и конструкция генератора Тесла

Суть работы генераторного устройства заключается во внешних процессах, которые окружают человека — в воздействии ветра, воды и вибраций. Конструкция простого электрогенератора тока включает в себя катушку, в которой расположены две обмотки. Вторичный элемент функционирует в условиях вибрации, в результате чего в процессе эфирные вихри пересекают в сторону поперечного сечения. В итоге в системе образуется напряжение, что приводит к воздушной ионизации. Это происходит на острие обмотки, что способствует образованию разрядов.

Осциллограмма колебаний электричества сопоставляет кривые. Использование трансформаторного металла в конструкции обеспечивает усиление индуктивной связи. Это способствует появлению плотного сплетения, а также колебаний между обмоточными элементами.

Простой чертеж электрогенератора Тесла

В результате извлечения ситуация меняется в обратную сторону. Сигнал в системе затухает, но рабочий параметр мощности, который можно получать, увеличивается перейдя через нулевую точку. После этого, когда мощность дойдет до максимального показателя, она оборвется несмотря на слабую связь и отсутствие тока в первичной обмотке. По мнению Тесла, эти колебания допускается получить из эфира. В такой среде возможна выработка электроэнергии.

Бестопливные устройства функционируют на мощности, вырабатывающейся непосредственно оборудованием. Для запуска устройств понадобится один импульс от аккумуляторной батареи. Но это изобретение Тесла еще не нашло применения в быту.

Функционирование бестопливного электрогенератора зависит от его конструктивных особенностей.

Конструкция включает в себя:

  1. Две металлические пластины. Один элемент поднимается вверх, а второй монтируется в землю.
  2. Конденсаторное устройство. К этому компоненту подсоединяются две электроцепи, которые идут от заземления и сверху.

На металлическую пластину подается постоянный разряд, в результате чего происходит выделение специальных частиц. Сама по себе поверхность Земли представляет собой резервуар с минусовыми частицами, поэтому одну из пластин надо установить в землю. Установка работает в условиях повышенного заряда, что приводит к поступлению тока в конденсаторное устройство. Последний питается от этого тока.

Канал «Просто о сложном» рассказал и наглядно показал принцип действия генератора Тесла.

Последователи Тесла

После появления устройства Теслы через какое-то время над созданием генераторных агрегатов стали работать другие деятели науки.

Карл Фердинанд Браун

Физик Браун работал по изобретению безопорной тяги за счет воздействия электроэнергии. Ученый точно описал процесс образования мощности благодаря работе с источником энергии. Следующим изобретением после разработки Брауна стало генераторное устройство Хаббарда. В катушке этого агрегата происходила активация сигналов, что приводило к вращению магнитного поля. Мощность, которую вырабатывал механизм, была высокой, это позволяло всей системе делать полезную работу.

Лестер Нидершот

Следующим последователем стал Нидершот. Он создал устройство, которое включало в себя радиоприемник, а также неиндуктивную катушку. Похожими компонентами оснастил свою разработку физик Купер. Принцип работы устройства оборудования заключался в применении явления индукции без использования магнитного поля. Для его компенсации в структуру внедрялись катушки, оснащенные специальной намоточной спиралью либо двумя кабелями. Принцип действия устройства кроется в образовании мощности во вторичной цепи обмотки, причем для создания величины первичная катушка не нужна.

В соответствии с описанием концепция указывает на безопорную движущую силу в пространстве. Как утверждал ученый, гравитация позволяет поляризировать атомы. По его мнению, катушки, которые конструируются специфически, позволяют создавать поле и при этом не экранируют. Такие элементы обладают похожими техническими свойствами и параметрами с гравитационным полем.

Эдуард Грей

Одним из последователей Теслы был ученый Э. Грей. Он занимался разработкой генераторных устройств на основе рекомендаций и трудов Теслы.

Схема генераторного устройства Грея

Следует отметить, что с точки зрения физики понятия свободной энергии как такового не существует. Но практика показала, что энергия обладает постоянством. Если рассматривать этот вопрос детально, то генераторное устройство выделяет мощность, которая после выработки возвращается обратно. Это приводит к тому, что приток энергии посредством гравитации и времени не виден пользователю. Если образуется процесс больше трех измерений, то появляется свободное перемещение частиц.

Одним из самых известных ученых, который интересовался такими разработками, был Джоуль. С целью выработки мощности использование схем генераторных устройств приведет к серьезным потерям. Это связано с тем, что распределение в системе централизовано и выполняется под контролем.

Из последних новых разработок следует выделить простой двигатель Адамса, а ученый Флойд смог вычислить состояние материала в нестабильном виде.

Ученые создали много конструкций и изобретений по получению энергии, но на рынке пока еще не появилось ни одного устройства, которое можно использовать в быту.

Андрей Тиртха рассказал о получении свободной энергии в домашних условиях.

Как получить свободную энергию своими руками?

Чтобы сделать генератор свободной энергии, который можно использовать в доме, учтите практические рекомендации:

  1. Не нужно «совершенствовать» чужие схемы. Чертежи можно найти в сети. Большинство из приведенных схем уже проверены и в них внесены корректировки, которые обеспечат правильную работу устройства.
  2. Используется транзисторные элементы и прочие комплектующие с учетом мощности, рекомендуем покупать детали с запасом.
  3. Все устройства и детали, которые будут использоваться при сборке в домашних условиях, перед эксплуатацией надо проверить.
  4. Для создания устройства потребуется осциллограф. С помощью этого оборудования можно выполнить диагностику импульсов. Посредством настройки генераторного оборудования надо обеспечить образование фронтов.

Как собрать генератор Тесла?

Чтобы собрать генератор, который получал бы свободную энергию, потребуются следующие детали:

  • электролитические конденсаторные устройства;
  • диодные конденсаторные элементы, выполненные из керамики;
  • антенный модуль;
  • заземление;
  • кусок картона размером 30*30 см.

Алгоритм действий при сборке:

  1. Возьмите подготовленный кусок картона и заверните его в пищевую фольгу. Ее размеры должны соответствовать габаритам картона.
  2. Используя специальные скобы, зафиксируйте на рабочей поверхности платы диодные и конденсаторные устройства, их заранее надо спаять между собой.
  3. Подключите к заземлению схему и подсоедините ее к генераторному устройству.
  4. Антенный модуль должен оснащаться специальным полюсом, выполненным из изолирующего материала. Как вариант, можно использовать ПВХ. Сама антенна устанавливается на высоте не менее трех метров.
  5. Выходная электроцепь подключается к источнику освещения — лампочке.

Собранное устройство может применяться в частных домовладениях, его установка не вызовет проблем при наличии бытового генераторного оборудования. Если система будет выполнять функцию регулярного обеспечения здания электроэнергией, то на входе разводки дополнительно монтируется тороидальный трансформатор либо ТВС. Это позволит выполнить стабилизацию входящих импульсов и обеспечить образование постоянных волн, что даст возможность повысить безопасность электролиний.

Схема расположения генераторного устройства Тесла после сборки

Самостоятельное получение свободной энергии из трансформатора

Элементы, которые потребуются для сборки трансформаторного генератора:

  • слесарный инструмент - дрель, комплект сверел, плоскогубцы, две отвертки, гаечные ключи, паяльник с расходными материалами, а также линейка и канцелярский нож;
  • эпоксидная смола либо клей;
  • изолента и двусторонний скотч;
  • деревянная либо пластмассовая панель, будет использоваться в качестве основы для платы, размеры составляют 100*60 см;
  • магнит, габариты устройства должны быть около 10*2*1 см;
  • металлический прут, его размер составит 8 см, а диаметр — 2 см;
  • металлический профиль 100*5*20 см;
  • два трансформаторных устройства, величина напряжения должна составить в диапазоне от 110 до 220 вольт, а параметра трансформации должен быть 1:5;
  • два конденсаторных устройства по 500 мкФ и четыре по 1000 мкФ, все элементы рассчитаны на работу при 500 В;
  • розетка для подключения внешних электроцепей;
  • комплект проводов ПВ-3 длиной 10 метров с сечением 1,5*2 мм, а также два провода по 18 метров разных цветов с сечением 2,5*2 мм;
  • кабель эмалированный, его длина составит 50 метров, а сечение должно быть 1,5*2 мм;
  • 150 специальных древесных стержней с диаметром 3 мм.

Основным этапом сборки генератора является намотка катушек, число витков для каждой из них должно быть одинаковым.

Nikola Tesla рассказал о получении свободной энергии из трансформаторного устройства.

Процедура сборки:

  1. На основной панели расчертите два круга, диаметр каждого должен составить 10 см, при этом расстояние между их центрами будет не более 50 см. На окружности отмечаются одинаковые расстояния, после чего все точки в соответствии со схемой просверливаются дрелью. Диаметр сверла должен быть 3 мм. В полученные отверстия устанавливаются древесные стержни. Их длина от поверхности составит 7 см, остальная часть на каждом стержне срезается, после обрезания надо осторожно выпрямить элементы.
  2. Кабель с сечением 1,5*2 мм прокладывается между стержней, для каждой катушки потребуется 12 витков. После намотки первого слоя надо намотать второй, его сечение составит 2,5*2 мм, только теперь потребуется по 6 наматываний для каждого элемента. Затем производится намотка кабеля другой расцветки с сечением 2,5*2 мм, для каждого компонента потребуется по шесть витков. При намотке оставляется около 6 см каждого провода для соединения со следующей электроцепью.
  3. Витки кабелей можно прижимать с помощью линейки сверху, делать это надо осторожно. На верхней части катушки наматывается изолента. Ее наличие обеспечит надежную защиту электроцепей от внешних воздействий и повреждений, а также нужную прочность устройства.
  4. Следующим этапом будет создание катушек, которые будут применяться для управления магнитного резонаторного устройства. Возьмите подготовленные цилиндрические прутики и обмотайте их слоем вощеной бумаги, сверху наматывается кабель сечением 1,5 мм. Для каждой катушки потребуется сорок витков.
  5. Используя фурнитуру для мебели, а также кусок пластмассы, надо соорудить подвижный механизм и зафиксировать на нем катушки, которые вы сделали раньше. Для фиксации применяется эпоксидная смола или клей, последний вариант более предпочтительный. Важно, чтобы катушки перемещались без больших усилий, перекосы не допускаются. В качестве направляющих используется компоненты длиной не больше 25 см.
  6. Затем конструкцию надо закрепить на панели. Между катушками устанавливается собранный узел и фиксируется посредством саморезов. Перед устройством закрепляется магнит. Его фиксация производится клеем.
  7. Возьмите подготовленные конденсаторные устройства на 500 мкФ и к нижней части элементов приклейте кусок двустороннего скотча. Конденсаторные компоненты монтируются в центре сделанных катушек. Эти действия выполняются со всеми устройствами. На основной панели устанавливается по два конденсаторных элемента с наружной стороны катушки.
  8. Выполняется установка оставшихся составляющих генераторного устройства. Трансформаторные элементы фиксируются на основной панели. Все детали подключаются друг к другу посредством пайки. При подключении электроцепей катушек и конденсаторных устройств надо следить за правильностью сборки, как показано на схеме. Нельзя перепутать конец обмотки с ее началом. После пайки выполняется диагностика прочности соединений.
  9. Выполните подключение розетки, ее монтаж на панели делается в наиболее удобном месте. Открытые жилы электроцепей обматываются изолентой, при ее отсутствии допускается применением термоусадочных трубок. На этом процедура сборки завершена.

Перед эксплуатацией требуется регулировка модуля магнитного резонатора. К розетке надо подключить нагрузку, в качестве которой допускается применение одного либо нескольких источников освещения. Они соединяются параллельно между собой. Полученная нагрузка подключается к генераторном устройству, после чего катушки подвигаются к магниту. Это обеспечит наибольшую эффективность функционирования оборудования. Определить параметр эффективности можно по накалу источников освещения, когда будет достигнут нужный эффект, регулировка завершается.3. Установка конденсаторных элементов на плате

Инструкция по сборке магнитного генератора

Есть два варианта генерации электроэнергии при сборке магнитного генераторного устройства:

  1. В качестве основы магнитного ДВС могут применяться мотки электрического мотора. Этот вариант более простой в плане конструирования, но сам двигатель должен быть немаленьким по размерам. На нем должно быть свободное место для монтажа магнитов, а также обмоток.
  2. Подсоедините к магнитному мотору электрическое генераторное устройство. Это создаст прямую связь валов посредством зубчатых передач. Такой вариант позволит обеспечить большую выработку энергии, но он более сложный в плане сборки.

Схема питания генераторного устройства от магнитов

Алгоритм сборки:

  1. В качестве прототипа магнитного устройства может применяться вентилятор охлаждения процессора компьютера.
  2. Катушки применяются для образования магнитного поля. Вместо них допускается использование неодимовых магнитных устройств. Они устанавливаются в направлениях, в которых монтируются катушки. Это обеспечит неизменность магнитного поля, требующегося для функционирования мотора. Сам агрегат оснащается четырьмя катушками, поэтому для сборки потребуется четыре магнита.
  3. Магнитные элементы устанавливаются в направление катушек. Функционирование силового агрегата обеспечивается благодаря появлению магнитного поля, для запуска мотору не нужна электроэнергия. В результате изменения направления магнитных элементов обеспечивается изменение скорости вращения мотора. Величина электроэнергии, которую вырабатывает устройство, также будет меняться.

Такое генераторное устройство является вечным, поскольку мотор будет функционировать до момента, пока из его цепи не будет убран один из магнитов. Если в качестве основы будет использоваться мощный радиатор, то энергии, которую он вырабатывает, будет достаточно для запитки источников освещения или бытовых приборов. Главное, чтобы они потребляли не более 3 кВт в час.

Резонансный трансформатор есть у каждого, но мы настолько к ним привыкли, что не замечаем как они работают. Включив радиоприемник, мы настраиваем его на радиостанцию, которую хотим принять. При надлежащем положении ручки настройки приемник будет принимать и усиливать колебания только тех частот, какие передает эта радиостанция, колебания других частот он не примет. Мы говорим, что приемник настроен.

Настройка приемника основана на важном физическом явлении резонанса. Вращая ручку настройки, мы изменяем емкость конденсатора, а стало быть и собственную частоту колебательного контура. Когда собственная частота контура радиоприемника совпадает с частотой передающей станции, наступает резонанс. Сила тока в контуре радиоприемника достигает максимума и громкость приема данной радиостанции - наибольшая

Явление электрического резонанса позволяет настраивать передатчики и приемники на заданные частоты и обеспечить их работу без взаимных помех. При этом происходит умножение электрической мощности входного сигнала в несколько раз

В электротехнике происходит то же самое

Подключим конденсатор к вторичной обмотке обычного сетевого трансформатора, при этом ток и напряжение данного колебательного контура окажутся сдвинутыми по фазе на 90°. Замечательно то, что трансформатор не заметит этого подключения и ток его потребления снизится.

Цитата от Гектора: "ни один ученый не мог себе вообразить, что секрет ZPE может быть выражен с помощью только трех букв – RLC!"

Резонансная система, состоящая из трансформатора, нагрузки R (в виде лампочки накаливания), батареи конденсаторов C (для настройки в резонанс), 2-канального осциллографа, катушки переменной индуктивности L (для точной установки ПУЧНОСТИ ТОКА в лампочке и пучности напряжения в конденсаторе). В резонансе радиантная энергия, начинает течь в цепи RLC. Для того, чтобы направить её в нагрузку R, необходимо СОЗДАТЬ СТОЯЧУЮ ВОЛНУ и точно совместить пучность тока в резонансном контуре с нагрузкой R.

Процедура: подключите первичную обмотку трансформатора к сети 220 В или к тому источнику напряжения, какое у вас есть. Путем настройки колебательного контура, за счёт ёмкости С, катушки переменной индуктивности L, сопротивления нагрузки R, Вы должны СОЗДАТЬ СТОЯЧУЮ ВОЛНУ, у которой пучность тока появится на юз R. В пучности тока подключена лампа 300 Вт и она горит в полный накал при нулевом напряжении!

КЗ виток в Доп. тр-ре не только нагревается до 400 °С, но вводит его сердечник в насыщение и сердечник также нагревается до 90°С, что можно использовать

Невероятная картина: машина дает ток, равный нулю, но распадающийся на два разветвления, по 80 Ампер в каждом. Не правда ли, недурной пример для первого знакомства с переменными токами?"

Максимальный эффект от применения резонанса в колебательном контуре можно получить при его конструировании с целью повышения добротности. Слово «добротность» имеет смысл не только «хорошо сделанного» колебательного контура. Добротность контура - это отношение тока, протекающего через реактивный элемент, к току, протекающему через активный элемент контура. В резонансном колебательном контуре можно получить величину добротности от 30 до 200. При этом, через реактивные элементы: индуктивность и емкость протекают токи, намного больше, чем ток от источника. Эти большие «реактивные» токи не покидают пределов контура, т.к. они противофазны, и сами себя компенсируют, но они реально создают мощное магнитное поле, и могут «работать», например в эффективность которых зависит от резонансного режима работы

Проанализируем работу резонансного контура в симуляторе http://www.falstad.com/circuit/circuitjs.html (бесплатная программа)

Правильно построеннный резонансный контур (резонанс нужно строить, а не собирать из того что оказалось под рукой ) потребляет от сети лишь несколько ватт, при этом в колебательном контуре имеем киловаты реактивной энергии, которые можно снять для отопления дома или теплицы при помощи индукционного котла или при помощи одностороннего трансформатора

Например, имеем домашнюю сеть 220 вольт, 50 Гц. Задача: получить на индуктивности в параллельном резонансном колебательном контуре ток величиной в 70 Ампер

Закон Ома для переменного тока для цепи с индуктивностью

I = U / X L , где X L - индуктивное сопротивление катушки

Знаем, что

X L = 2πfL, где f - частота 50 Гц, L - индуктивность катушки (в Генри)

откуда найдем индуктивность L

L = U / 2πfI = 220 вольт / 2 3,14 * 50 Гц 70 Ампер = 0.010 Генри (10 мили Генри или 10mH).

Ответ: чтобы получить в параллельном колебательном контуре ток 70 Ампер, необходимо сконструировать катушку с индуктивностью 10 мили Генри.

По формуле Томсона

fрез = 1 / (2π √ (L C)) находим величину емкости конденсатора для данного колебательного контура

С = 1 / 4п 2 Lf 2 = 1 / (4 (3,14 3,14) * 0,01 Генри (50 Гц 50 Гц)) = 0,001014 Фарад (или 1014 микро Фарад, или 1,014 мили Фарад или 1mF)

Потребление от сети данного параллельного резонансного автоколебательного контура составит лишь 6,27 Ватт (см. рисунок ниже)

24000 ВА реактивной мощности при потреблении 1300 Вт Диод перед резонансным контуром

Вывод: диод перед резонансным контуром снижает потребление от сети в 2 раза, диоды внутри резонансного контура снижают потребление ещё в 2 раза. Общее снижение потребляемой мощности в 4 раза!

В заключение:

Параллельный резонансный контур в 10 раз увеличивает реактивную мощность!

Диод перед резонансным контуром снижает потребление от сети в 2 раза,

Диоды внутри резонансного контура дополнительно снижают потребление в 2 раза.

Асимметричный трансформатор имеет две катушки L2 и Ls.

Например, трансформатор изображенный ниже - это разделительный трансформатор 220/220 изготовленный по принципу асимметричного.

Если на Ls подать 220 вольт, то на L2 снимем 110 вольт.

Если на L2 подать 220 вольт, то на Ls снимем 6 вольт.

Асимметрия в передаче напряжения налицо.

Этот эффект можно использовать в схеме Резонансного усилителя мощности Громова/Андреева, заменяя магнитный экран на асимметричный трансформатор

Секрет усиления тока в асимметричном трансформаторе заключается в следующем:

Если через множество асимметричных трансформаторов пропустить электромагнитный поток, то все они не будут влиять на этот поток, т.к. любой из асимметричных трансформаторов не влияет на поток. Реализацией такого подхода является набор дросселей на Ш-образных сердечниках и установленных вдоль оси внешнего воздействующего поля, полученного от катушки Ls.

Если вторичные катушки L2 трансформаторов затем соединим параллельно, то получим усиление тока.

В результате: получаем набор асимметричных трансформаторов организованных в стек:

Для выравнивания поля на краях Ls, могут быть организованы дополнительные витки по её концам.

Катушки изготовлены из 5 секций, на ферритовых сердечниках Ш - типа с проницаемостью 2500, с использованием провода в пластиковой изоляции.

Центральные трансформаторные секции L2 имеют по 25 витков, а крайние трансформаторы 36 витков (для выравнивания наводимого в них напряжения).

Все секции соединены параллельно.

Внешняя катушка Ls имеет дополнительные витки для выравнивания магнитного поля на её концах), при намотке LS была использована однослойная обмотка, число витков зависело от диаметра провода. Усиления тока для этих конкретных катушек - 4-х кратное.

Изменение индуктивности Ls составляет 3% (если L2 закорочена для имитации тока во вторичке (т.е. как-бы к ней подключена нагрузка)

Чтобы избежать потери половины потока магнитной индукции первичной обмотки в незамкнутом магнитопроводе асимметричного трансформатора, состоящем из n-количества Ш-образных или П- образных дросселей, его можно замкнуть, как показано ниже

0. Резонансный генератор свободной энергии. Избыточная мощность 95 Вт на обмотке съёма достигается использованием 1) резонанса напряжений в обмотке возбуждения и 2) резонанса тока в резонансном контуре. Частота 7,5 кГц. Первичное потребление 200 мА, 9 Вольт видео1 и видео2

1. Устройства получения свободной энергии. Патрик Дж. Келли ссылка

Клацалка по Романову https://youtu.be/oUl1cxVl4X0

Настройка частоты Клацалки по Романову https://youtu.be/SC7cRArqOAg

Модуляция НЧ сигала ВЧ сигналом на пуш-пулл ссылка

Электрический резонанс

В колебательном контуре на рисунке емкость С, индуктивность L и сопротивление R включены последовательно с источником ЭДС.

Резонанс в таком контуре называется последовательным резонанском напряжений. Его характерная черта - напряжения на емкости и индуктивности при резонансе значительно больше внешней ЭДС. Последователный резонансный контур как бы усиливает напряжение.

Свободные электрические колебания в контуре всегда затухают. Для получения незатухающих колебаний необходимо пополнять энергию контура с помощью внешней ЭДС.

Источником ЭДС в контуре служит катушка L, индуктивно связанная с выходным контуром генератора электрических колебаний.

Таким генератором может служить электрическая сеть с постоянной частотой f = 50 Hz.

Генератор создает в катушке L колебательного контура некоторую ЭДС.

Каждой величине емкости конденсатора С соответствует своя собственная частота колебательного контура

Которая меняется с изменением емкости конденсатора С. При этом частота генератора остается постоянной.

Таким образом, чтобы возможен был резонанс соответственно частоте подбирают индуктивность L и емкость С.

Если в колебательном контуре 1 включены три элемента: емкость C, индуктивность L и сопротивление R, то как же они влияют на амплитуду тока в цепи все вместе?

Электрические свойства контура определяются его резонансной кривой.

Зная резонансную кривую мы сможем заранее сказать какой амплитуды достигнут колебания при самой точной настройке (точка Р) и как повлияет на ток в контуре изменение емкости С, индуктивности L и активного сопротивления R. Поэтому задача - построить по данным контура (емкости, индуктивности и сопротивлению) его резонансную кривую. Научившись, мы сможем заранее представить, как себя будет вести контур с любыми значениями С, L и R.

Наш опыт в следующем: меняем емкость конденсатора С и замечаем по амперметру ток в контуре для каждого значения емкости.

По полученный данным строим резонансную кривую для тока в контуре. По горизонтальной оси будем откладывать для каждого значения С отношение частоты генератора к собственной частоте контура. По вертикальной отложим отношение тока при данной емкости к току при резонансе.

Когда собственная частота контура fo приближается к частоте f внешней ЭДС, ток в контуре достигает своего максимального значения.

При электрическом резонансе не только ток достигает своего максимального значения, но и заряд, а следовательно и напряжение на конденсаторе.

Разберем роль емкости, индуктивности и сопротивления в отдельности, а затем уже всех вместе.

Заев Н.Е., Прямое преобразование тепловой энергии в электрическую. Патент РФ 2236723. Изобретение относится к устройствам преобразования одного вида энергии в другой и может использоваться для получения электроэнергии без затраты топлива за счет тепловой энергии окружающей среды. В отличие от нелинейных конденсаторов - варикондов, изменение (процентное) емкости которых за счет изменения диэлектрической проницаемости незначительно, что не позволяет использовать вариконды (и устройства на их основе) в промышленных масштабах, здесь используются алюминиевые - оксидные, т.е. обычные электролитические конденсаторы. Заряд конденсатора осуществляется однополярными импульсами напряжения, передний фронт которых имеет наклон менее 90°, а задний фронт - более 90°, при этом отношение длительности импульсов напряжения к длительности процесса заряда составляет от 2 до 5, а после окончания процесса заряда формируют паузу, определяемую соотношением Т=1/RC 10-3 (сек), где Т - время паузы, R - сопротивление нагрузки (Ом), С - емкость конденсатора (фарада), после чего осуществляют разряд конденсатора на нагрузку, время которого равно длительности однополярного импульса напряжения. Особенность способа в том, что после окончания разряда конденсатора формируют дополнительную паузу.

Однополярные импульсы напряжения для зарядки электролитического конденсатора могут иметь не только треугольную форму, главное, чтобы передний и задний фронты не были 90°, т.е. импульсы не должны быть прямоугольной формы. При проведении эксперимента использовались импульсы, полученные в результате двухполупериодного выпрямления сигнала сети 50 Гц. (см. ссылку)

Http:="">Показана необходимость изменения внутренней энергии диэлектрика конденсатора (феррита в индуктивности) за цикл «Зарядка-Разрядка» («намагничивание - размагничивание»), если ∂ε/∂E ≠ 0, (∂µ/∂H ≠ 0),

Емкостное сопротивление 1/2πfC зависит от частоты.

На рисунке показан график этой зависимости.

По горизонтальной оси отложена частота f, а по вертикальной - емкостное сопротивление Xc = 1/2πfC.

Мы видим, что высокие частоты (Xc мало) конденсатор пропускает, а низкие (Xc велико) - задерживает.

Влияние индуктивности на резонансный контур

Емкость и индуктивность оказывают на ток в цепи противоположные действия. Пусть вначале внешняя ЭДС заряжает конденсатор. По мере заряда растет напряжение U на конденсаторе. Оно направлено против внешней ЭДС и уменьшает ток заряда конденсатора. Индуктивность наоборот, с уменьшением тока стремится его поддержать. В следующую четверть периода, когда конденсатор разряжается, напряжение на нем стремится увеличить ток заряда, индуктивность же, наоборот, препятствует этому увеличению. Чем больше индуктивность катушки, тем меньшей величины успеет достичь за четверть периода разрядный ток.

Ток в цепи с индуктивностью равен I = U/2πfL. Чем больше индуктивность и частота, тем меньше ток.

Индуктивное сопротивление потому и называется сопротивлением, что оно ограничивает ток в цепи. В катушке индуктивности создается ЭДС самоиндукции, которая мешает току нарастать, и ток успевает нарастать только до некоторой определенной величины i=U/2πfL. При этом электрическая энергия генератора переходит в магнитную энергию тока (магнитное поле катушки). Так продолжается чеверть периода, пока ток не достигнет своего наибольшего значения.

Напряжения на индуктивности и емкости в режиме резонанса равны по величине и, находясь в противофазе, компенсируют друг друга. Таким образом все приложенное к цепи напряжение приходится на ее активное сопротивление

Поэтому полное сопротивление Z последовательно включенных конденсатора и катушки равно разности между емкостным и индуктивным сопротивлением:

Если учесть также активное сопротивление колебательного контура, то формула полного сопротивления примет вид:

Когда емкостное сопротивление конденсатора в колебательном контуре равно индуктивному сопротивлению катушки

то полное сопротивление цепи Z переменному току будет наименьшим:

т.е. когда полное сопротивление резонансного контура равно лишь активному сопротивлению контура, то амплитуда тока I достигает своего максимального значения: И ПРИХОДИТ РЕЗОНАНС.

Резонанс наступает, когда частота внешней ЭДС равна собственной частоте системы f = fo.

Если менять частоту внешней ЭДС или собстенную частоту fo (расстройка) то, чтобы вычислить ток в колебательном контуре при любой расстройке, нам достаточно подставить в формулу значения R, L, C, w и E.

При частотах ниже резонансной часть энергии внешней ЭДС тратится на преодоление возвращающих сил, на преодоление емкостного сопротивления. В следующую четверть периода направление движения совпадает с направлением возвращающей силы, и эта сила отдает источнику энергии, полученную за первую четверть периода. Противодействие со стороны возвращающей силы ограничивает амплитуду колебаний.

При частотах, больших резонансной, основную роль играет инерция (самоиндукция): внешняя сила не успевает за четверть периода ускорить тело, не успевает внести в цепь достаточную энергию.

При резонансной частоте внешней силе легко качать тело, т.к. частота его свободных колебаний и внешняя сила только преодолевают трение (активное сопротивление). В этом случае полное сопротивление колебательного контура равно только его активному сопротивлению Z = R, а емкостное сопротивление Rc и индуктивное сопротивление RL контура равны 0. Поэтому ток в контуре максимален I = U/R

Резонанс - явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды - это лишь следствие резонанса, а причина - совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс - явление, когда при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротность.

Добротность - характеристика колебательной системы, определяющая полосу резонанса и показывающая, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний.

Добротность обратно пропорциональна скорости затухания собственных колебаний в системе - чем выше добротность колебательной системы, тем меньше потери энергии за каждый период и тем медленнее затухают колебания

Тесла писал в своих дневниках, что ток внутри параллельного колебательного контура в добротность разы больше, чем вне его.

Последовательный резонанс. Резонанс и трансформатор. Фильм 3

Диодный колебательный контур Рассматривается новая схема колебательного контура с применением двух катушек индуктивности, включенных через диоды. Добротность контура возросла примерно вдвое, хотя уменьшилось характеристическое сопротивление контура. Индуктивность уменьшилась вдвое, а емкость увеличилась

Последовательно-параллельным реонансный колебательный контур

Исследования резонанса и добротности RLC-контура

Мы исследовали компьютерную модель RLC-контура в программе «Открытая физика», нашли резонансную частоту контура, на резонансной частоте исследовали зависимость добротности контура от сопротивления и построили графики.

В практической части работы исследовали реальный RLC-контур с использованием компьютерной программы «Audiotester». Нашли резонансную частоту контура, на резонансной частоте исследовали зависимость добротности контура от сопротивления и построили графики.

Выводы , сделанные нами в теоретической и практической части работы, совпали полностью.

· резонанс в цепи с колебательным контуром наступает при совпадении частоты генератора f c частотой колебательного контура fo;

· с увеличением сопротивления добротность контура падает. Самая высокая добротность при небольших значениях сопротивления контура;

· самая высокая добротность контура ― на резонансной частоте;

· полное сопротивление контура минимально на резонансной частоте.

· попытка прямым путем снять излишки энергии из колебательного контура приведет к затуханию колебаний.

Применения резонансных явлений в радиотехнике неисчислимы.

Однако, в электротехнике применить резонанс мешают стереотипы и негласные современные законы, накладывающие запреты на применение резонанса для получения Свободной энергии. Самым интересное, что все электростанции уже давно пользуются подобным оборудованием, ведь явление резонанса в электрической сети известно всем электромеханикам, но у них совсем иные цели. Когда явление резонанса возникает, идет выброс энергии, который может превосходить норму в 10 раз, и большинство устройств у потребителей перегорают. После этого индуктивность сети изменяется и резонанс исчезает, но перегоревшие устройства не восстановить. Чтобы избежать этих неудобств, устанавливают антирезонирующие вставки, которые автоматически меняют свою емкость и отводят сеть из опасной зоны как только она окажется близкой к резонансным условиям. Если бы резонанс поддерживался в сети специально, с последующим ослаблением силы тока на выходе с резонансной электроподстанции, то потребление топлива снизилось бы в несколько десятков раз и себестоимость производимой энергии снизилась. Но современная электротехника борется с резонансом, создавая антирезонансные трансформаторы и т.п., а у ее сторонников сложились устойчивые стереотипы относительно параметрического резонансного усиления мощности. Поэтому не все явления резонанса реализованы на практике.

Возьмем книгу «Элементарный учебник физики под редакцией академика Г.С. Ландсберга Том III Колебания, волны. Оптика. Строение атома. – М.: 1975г., 640 с. с илл.» откроем ее на страницах 81 и 82 где приведено описание экспериментальной установки для получения резонанса на частоту городского тока 50 Герц.

Здесь ясно показывается, как можно на индуктивности и емкости получить напряжения в десятки раз большие, чем напряжение источника питания.

Резонанс это накопление энергии системой, т.е. мощность источника не надо увеличивать, система накапливает энергию т.к. не успевает её расходовать. Это делается на добавлении энергии в момент максимальных отклонениях в собственной частоте, система производит выброс энергии и замирает в "мертвой точке" в этот момент подается импульс, происходит добавление энергии в систему, т.к. в данный момент её просто нечем расходовать, и происходит рост амплитуды собственных колебаний, естественно он небесконечный и зависит уже от прочности системы, нужно будет вводить еще одну обратную связь для ограничения накачки, я об этом задумался после взрыва первичной обмотки. Так, если не принимать специальных мер, то мощность, развиваемая резонансом, разрушит элементы установки.

Электрическая схема резонансного усилителя мощности тока промышленной частоты. По Громову.

В резонансном усилителе тока промышленной частоты используется явление ферро-резонанса сердечника трансформатора, а также явление электрического резонанса в последовательном колебательном контуре LC-резонанс. Эффект усиления мощности в последовательном резонансном контуре достигается за счет того, что входное сопротивление колебательного контура при последовательном резонансе является чисто активным, а напряжение на реактивных элементах колебательного контура превышает входное напряжение на величину равную добротности контура Q. Для поддержания незатухающих колебаний последовательного контура в резонансе требуется компенсировать только тепловые потери на активных сопротивлениях индуктивности контура и внутреннем сопротивлении источника входного напряжения.

Структурная схема и состав резонансного усилителя мощности, описанная Громовым Н.Н. в 2006 году, приедена ниже

Входной понижающий трансформатор уменьшает напряжение, но увеличивает ток во вторичной обмотке

Последовательный резонансный контур увеличивает напряжение ссылка

Как известно, при резонансе во вторичке Входного понижающего трансформатора, его потребление тока от сети снижается. ссылка

В результате мы получим большой ток и большое напряжение в резонансном контуре, но при этом очень низкое потребления от сети


В резонансном усилителе тока промышленной частоты нагруженный силовой трансформатор вносит расстройку в последовательный колебательный контур и уменьшает его добротность.

Компенсация расстройки резонанса в колебательном контуре осуществляется введением обратной связи с помошью управляемых магнитных реакторов. В цепи обратной связи осуществляется анализ и геометрическое суммирование составляющих токов вторичной обмотки и нагрузки, формирование и регулирование управляюшего тока.

Цепь обратной связи состоит из: части вторичной обмотки силового транформатора, трансформатор тока, выпрямитель и реостат установки рабочей точки, магнитных реакторов.

Для работы на неизменную (постоянную) нагрузку можно применять упрощенные схемы резонансных усилителей мощности.

Структурная схема упрощенного резонансного усилителя тока промышленной частоты представлена ниже.

Простейший резонансный усилитель мощности состоит всего из четырех элементов.

Назначение элементов такое, как в ранее рассмотренном усилителе. Отличие в том, что в простейшем резонансном усилителе производится ручная настройка в резонанс для конкретной нагрузки.

1. Включить силовой трансформатор 2 в сеть и измерить при заданной нагрузке потребляемый им ток.

2. Измерить активное сопротивление первичной обмотки силового трансформатора 2.

5. Выбрать величину индуктивного сопротивления для регулируемого магнитного реактора равную примерно 20% от индуктивного сопротивления силового трансформатора 2

6. Изготовить регулируемый магнитный реактор, с отводами начиная со средины обмотки до ее конца (чем чаще будут сделаны отводы, тем точнее будет настройка в резонанс).

7. По условию равенства индуктивного и емкостного сопротивлений XL=Xc при резонансе рассчитать значение емкости C, которую необходимо включить последовательно с силовым трансформатором и регулируемым магнитным реактором для получения последовательного резонансного контура.

8. Из условия резонанса, перемножить измеренный потребляемый силовым трансформатором ток на сумму активных сопротивлений первичной обмотки и магнитного реактора, и получить ориентировочное значение напряжения, которое необходимо подать на последовательный резонансный контур.

9. Взять трансформатор, обеспечивающий на выходе, найденное по п.8 напряжение и измеренный по п.1 потребляемый ток (на период настройки Усилителя удобней использовать ЛАТР).

10. Запитать от сети через трансформатор по п.9 резонансный контур - (последовательно соединенные конденсатор, первичную обмотку нагруженного силового трансформатора и магнитный реактор).

11. Изменяя индуктивность магнитного реактора путем переключения отводов, настроить цепь в резонанс при пониженном входном напряжении (для точной настройки можно в небольших пределах изменять емкость конденсатора, подключая параллельно основному, конденсаторы небольшой емкости).

12. Изменяя входное напряжение установить значение напряжения на первичной обмотке силового трансформатора 220 В.

13. Отключить ЛАТР и подключить стационарный понижающий трансформатор с таким же напряжением и током

Область применения резонансных усилителей мощности – стационарные электроустановки. Для мобильных объектов целесообразно применять трансгенераторы на повышенных частотах с последующим преобразованием переменного тока в постоянный.

Метод имеет свои тонкости, которые проще понять по методу механической аналогии. Представим себе процесс заряда обычного конденсатора, без диэлектрика, с двумя пластинами и зазором между ними. При заряде такого конденсатора, его пластины притягиваются друг к другу тем сильнее, чем больше заряд на них. При наличии у пластин конденсатора возможности двигаться, расстояние между ними уменьшится. Это соответствует увеличению емкости конденсатора, т.к. емкость зависит от расстояния между пластинами. Таким образом, «истратив» одно и то же количество электронов, можно получить больше запасенной энергии, если емкость увеличилась.

Представьте, что в ведро емкостью 10 литров наливают воду. Предположим, что ведро резиновое, и в процессе его наполнения, его объем увеличивается, например, на 20%. В итоге, сливая воду, мы получим 12 литров воды, хотя ведро при этом уменьшится, и в пустом виде будет иметь объем 10 литров. Дополнительные 2 литра, каким-то образом, в процессе «наливания воды» были «привлечены из среды», так сказать, «присоединились» к потоку.

Для конденсатора, это означает, что если по мере заряда, емкость увеличивается, то энергия поглощается из среды и преобразуется в избыточную запасаемую потенциальную электрическую энергию. Ситуация для простого плоского конденсатора с воздушным диэлектриком естественная (пластины сами собой притягиваются), а это означает, что мы можем конструировать простые механические аналоги варикондов, в которых избыточная энергия запасается в форме потенциальной энергии упругого сжатия пружины, помещенной между пластинами конденсатора. Этот цикл не может быть такой же быстродействующий, как в электронных устройствах с варикондами, но заряд, на пластинах конденсатора большого размера, может быть накоплен значительный, и устройство может генерировать большую мощность, даже при низкочастотных колебаниях. При разряде, пластины вновь расходятся на исходное расстояние, уменьшая начальную емкость конденсатора (пружина освобождается). При этом должен наблюдаться эффект охлаждения среды. Форма зависимости диэлектрической проницаемости сегнетоэлектрика от напряженности приложенного поля показана на графике Рис. 222.


На начальном участке кривой, диэлектрическая проницаемость, а значит и емкость конденсатора, увеличивается при росте напряжения, а затем она падает. Заряжать емкость надо только до максимальной величины (вершина на графике), иначе теряется эффект. Рабочий участок кривой помечен на графике Рис. 210 серым цветом, изменения напряжения в цикле «заряд – разряд» должны происходить в пределах этого участка кривой. Простой «заряд-разряд» без учета максимальной рабочей точки кривой зависимости проницаемости от напряженности поля не даст ожидаемого эффекта. Эксперименты с «нелинейными» конденсаторами, представляется перспективными для исследования, т.к. в некоторых материалах зависимость диэлектрической проницаемости сегнетоэлектрика от приложенного напряжения позволяет получать не 20%, а 50-ти кратные изменения емкости

Применение ферритовых материалов, по аналогичной концепции, также требует наличия соответствующих свойств, а именно, характерной петли гистерезиса при намагничивании и размагничивании, Рис. 2.

Этими свойствами обладают почти все ферромагнетики, поэтому преобразователи тепловой энергии среды, использующие данную технологию, могут быть подробно экспериментально изучены. Пояснение: «гистерезис», (от греческого hysteresis - запаздывание) – это различная реакция физического тела на внешнее воздействие, в зависимости от того, подвергалось ли это тело ранее тем же воздействиям, или подвергается им впервые. На графике, Рис. 223, показано, что намагничивание начинается с нулевой отметки, достигает максимума, а затем, начинается спад (верхняя кривая). При нулевом внешнем воздействии, отмечается «остаточное намагничивание», поэтому, когда цикл повторяется, то расход энергии меньше (нижняя кривая). При отсутствии гистерезиса, нижняя и верхняя кривые идут вместе. Избыточная энергия такого процесса тем больше, чем больше площадь петли гистерезиса. Н.Е.Заевым было экспериментально показано, что удельная плотность энергии для таких преобразователей составляет примерно 3 кВт на 1 кг ферритового материала, при максимально допустимых частотах циклов намагничивания и размагничивания.

https://youtu.be/ydEZ_GeFV6Y

Приоритеты: заявки Н.Е.Заева на открытие «Охлаждение некоторых конденсированных диэлектриков меняющимся электрическим полем с генерацией энергии» №32-ОТ- 10159; 14 ноября 1979 года http://torsion.3bb.ru /viewtopic.php?id=64 , заявка на изобретение "Способ преобразования тепловой энергии диэлектриков в электрическую", № 3601725/07(084905), 4 июня 1983 года, и «Способ преобразования тепловой энергии ферритов в электрическую», №3601726/25(084904). Метод был запатентован, патент RU2227947, 11 сентября 2002 года.

Нужно добиться, чтобы трансформаторное железо начало хорошо рычать, т.е возник ферро-резонанас. Не индукционный эффект между емкость и катушкой, а чтобы железо между ними работало хорошо. Железо должно работать и накачивать энергию, сам по себе электрический резонанс не качает, а железо является стратегическим устройством в этом устройстве.

Комбинированный резонанс обусловлен взаимодействием между спиновым магнитным моментом электрона и полем Е (см. Спин-орбитальное взаимодействие). Комбинированный резонанс был впервые предсказан для зонных носителей заряда в кристаллах, для которых он может превышать по интенсивности ЭПР на 7 - 8 порядков ссылка

Электрическая схема соединений представлена ниже.

Работа этого трансформатора связана с обычной электросетью. Пока я не собираюсь делать самозапитку, но это возможно сделать, надо вокруг него сделать такой же силовой трансформатор, один токовый трансформатор и один магнитный реактор. Все это обвязать и будет самозапитка.. Другой вариант самозапитки - это намотать 12 вольтную съемную вторичную катушку Тр2 на втором транформаторе, далее использовать компютерный ИБП, которого передать 220 Вольт уже на вход

Самое главное сейчас - это просто есть сеть, которая подается на схему, а я просто увеличиваю энергию за счет резонанса и питаю отопительный котел в доме. Это индуктивный котел, который называется ВИН. Мощность котла 5 кВт. Целый год этот котел проработал с моим умным трансформатором. За сеть я плачу как за 200 Вт.

Трансформатор может быть любым (на тороидном или П-образном сердечнике). Просто надо пластины трансформатора хорошо изолировать, покрасить, чтобы токов Фуко в нем было как можно меньше, т.е. чтоб сердечник при работе не грелся вообще.

Просто резонанс дает реактивную энергию, а переводя реактивную энергию в любой элемент потребления она становится активной. Счетчик до трансформатора при этом почти не крутится..

Для поиска резонанса я использую прибор Е7-15 еще советского исполнения. С ним я легко добиваюсь резонанса в любом трансформаторе.

Итак, за суровый зимний месяц я заплатил 450 рублей.

С 1-го трансформатора с тороидальным сердечником на 1 кВт я имею во вторичке 28 ампер и 150 вольт. Но нужна обратная связь через токовый трансформатор. Мотаем катушки: Сделать каркас. Когда первичную намотал по всему периметру в два слоя (проводом с диаметром 2,2 мм c учетом 0,9 витка на 1 вольт, т.е. на 220 Вольт в первичной обмотке получается 0,9 витков/В х 220 В = 200 витков), то магнитный экран положил (из меди или латуни), когда вторичную намотал (проводом с диаметром 3 мм с учетом 0,9 витка на 1 Вольт), то снова магнитный экран положил. На вторичной обмотке 1-го транса, начиная с середины, т.е. с 75 Вольт, я сделал множество выводов петлей (около 60-80 штук, кто сколько сможет, примерно 2 Вольта на вывод). На всей вторичной обмотке 1-го трансформатора нужно получить 150 - 170 Вольт. Для 1 кВт я выбрал емкость конденсатора 285 мкФ (тип используемых пусковых конденсаторов для эл. двигателя на рисунке ниже), т.е. два конденсатора. Если использовать 5 кВт трансформатор, то я буду использовать 3 таких конденсатора (неполярный для переменного тока 100 мкФ 450 Вольт). Проявление неполярности у такого кондера незначительное, чем меньше диаметр и короче баночка, тем лучше неполярность. Лучше выбирать более короткие коденсаторы, побольше количество, но меньшей емкости. Я нашел резонанс на середине выводов вторичной обмотки Т1. В идеале для резонанса замеряете индуктивное сопротивление и емкостное сопротивление контура, они должно быть равны. Вы по звуку услышите как трансформатор начнет сильно гудеть. Синусоида резонанса на осциллографе должна быть идеальной. Существуют разные частотные гармоники резонанса, но при 50 Гц трансформатор гудит в два раза громче, чем при 150 Гц. Из электротехнического инструмента я использовал токовые клещи, которые меряют частоту. Резонанс во вторичке Т1 вызывает резкое понижение тока в его первичной обмотке, который составил всего 120-130 мА. Чтобы не было претензий от сетевой компании, то параллельно первичной обмотке первого трансформатора устанавливаем конденсатор и доводим cos Ф = 1 (по токовым клещам). Напряжение я проверял уже на первичной обмотке Второго трансформатора. Итак, в этом контуре (вторичная обмотка 1-го трансформатора -> первичная обмотка 2-го трансформатора) у меня протекает ток 28 Ампер. 28А х 200В = 5,6 кВт. Эту энергию я снимаю с вторичной обмотки 2-го трансформатора (провод сечением 2,2 мм) и передаю на нагрузку, т.е. в индукционный электро-котел. На 3 кВт диаметр провода вторичной обмотки 2го трансформатора составляет 3 мм

Если хотите получить на нагрузке выходную мощность не 1,5 кВт, а 2 кВт, то сердечник 1го и 2го трансформатора (см габаритный расчет мощности сердечника) должны быть на 5 кВт

У 2го трансформатора (сердечник которого надо также перебрать, покрасить балонной краской каждую пластину, заусенцы убрать, тальком посыпать, чтобы пластины не прилипали друг к другу) надо сначала экран положить потом первичку намотать, потом на первичку 2го трансформатора снова экран положить. Между вторичкой и первичкой все-равно должен быть магнитный экран. Если мы получили напряжение в резонансном контуре 220 или 300 Вольт, то первичку 2го трансформатора нужно расчитать и мотать также на эти же 220 или 300 вольт. Если по рачету 0,9 витка на вольт, то количество витков будет соответственно на 220 или 300 Вольт. Возле электро-котла (в моем случае это индукционный котел ВИМ 1,5 кВт) я ставлю конденсатор, ввожу этот контур потребления в резонанс, то смотрю по току или по COS Ф, чтобы COS Ф был равен 1. Тем самым мощность потребления уменьшается и контур, где у меня крутится мошность 5,6 кВт, разгружаю. Я катушки мотал как в обычом трансформаторе - одна над другой. Конденсатор 278 мкФ. Конденсаторы я беру стартерные или сдвигающие, чтобы они на переменном токе хорошо работали. Резонансный трансформатор от Александра Андреева дает прибавку 1 к 20

Первичную обмотку расчитываем как обычный трансформатор. Когда собрали, то если ток там появится в пределах 1 - 2 Ампер, то лучше разобрать сердечник трансформатора, посмотреть где образуются токи Фуко и снова собрать сердечник (может где-то что-нибудь не докрасили или заусенец торчит. Оставьте трансформатор на 1 час в рабочем состоянии, затем пощупайте пальцами там где нагрелось или пирометром замерили в каком углу греется) Первичную обмотку надо мотать, чтобы она потребляла 150 - 200 мА в холостую.

Цепь обратной связи от вторичной обмотки трансформатора Т2 к первичной обмотке транформатора Т1 необходима для автоматичекой регулировки нагрузки, чтобы резонанс не срывался. Для этого в цепи нагрузки я разместил токовый трансформатор (первичка 20 витков, вторичка 60 витков и там несколько отводов сделал, далее через резистор, через диодный мост и на трансформатор в линию подающую напряжение к 1-му трансформатору (200 витков / на 60-70 витков)

Схема эта есть во всех древних учебниках по электротехнике. Она работает в плазматронах, в усилителях мощности, она в приемнике гама V работает. Температура обеих трансформаторов в работе около 80°С. Переменный резистор - это керамический резистор 120 Ом и 150 Вт, можно реостат школьный нихромовый с ползунком туда поставить. Он тоже нагревается до 60-80°С, поскольку ток через него проходит хороший => 4 Ампер

Смета для изготовления резонансного трансформатора для отопления дома или дачи

Трансформаторы Тр1 и Тр2 = по 5000 руб каждый причем Тр1 и Тр2 трансформатор можно купить в магазине. Он называется медицинский трансформатор. У него первичная обмотка уже заизолирована магнитным экраном от вторичной. http://omdk.ru/skachat_prays В крайнем случае можно купить китайский сварочный трансформатор

Трансформатор тока Тр3 и подстроечный Тр4 = 500 рублей каждый

Диодный мост Д - 50 рублей

Подстроечный резистор R 150 Вт - 150 рублей

Конденсаторы C - 500 рублей

Резонанс в резонансе от Романова https://youtu.be/fsGsfcP7Ags

https:// www.youtube.com /watch?v=snqgHaTaXVw

Цыкин Г.С. - Трансформаторы низкой частоты Ссылка

Резонансный дроссель Андреева на Ш-образном сердечнике от трансформатора. Как дроссель превратить в генератор электроэнергии.

Александр Андреев рассказывает: Это принцип дросселя и трансформатора в одном лице, но он настолько простой, что никто еще не догадался его использовать. Если взять Ш-образный сердечник 3х фазного трансформатора, то Функциональная схема генератора получения дополнительной энергии будет как на рисунке

Чтобы получить больший реактивный ток в резонансном контуре, ты должен трансформатор превратить в дроссель, то есть разорвать сердечник трансформатора полностью (сделать воздушный зазор).

Всего-навсего нужно первой намотать не входную, как обычно мотают, а выходную обмотку, т.е. ту где забирается энергия.

Вторую мотаем резонансную. При этом диаметр провода должен быть в 3 раза толще, чем силовая

В третий слой мотаем входную обмотку, т.е сетевую.

Это условие для того, чтобы резонанс между обмотками гулял.

Чтобы не было тока в первичной обмотке, то трансформатор превращаем в дроссель. Т.е. Ш-образки с одной стороны собираем, а ламельки (пластиночки) с другой стороны собираем. И там выставляем зазор. Зазор должен быть по мощности трансформатора. Если 1 кВт, то ему 5 А в первичной обмотке. Делаем зазор так, чтобы в первичной обмотке было 5А холостого хода без нагрузки. Этого нужно добиться зазором, который изменяет индуктивность обмоток. Потом, когда делаем резонанс ток падает до "0" и тогда уже будешь постепенно нагрузку подключать, и смотреть разницу входа мощности и выхода мощности и тогда халява получится. Я 1-фазным 30 кВт-ым трансформатором добился соотношения 1:6 (в пересчете на мощность 5А - на входе и 30А - на выходе)

Надо постепенно набирать мощность, чтоб не перепрыгнуть барьер халавщины. Т.е. как и в первом случае (с двумя трансформаторами) резонанс существует до определенной мощности нагрузки (меньше можно, но больше нельзя) Этот барьер нужно подбирать вручную. Можно подключать любую нагрузку (активную, индуктивную, насос, пылесос, телевизор, компьютер...) Когда перебор мощности будет, тогда резонанс уходит, тогда резонанс перестает работать в режиме накачки энергии.

По конструкции

Я взял Ш-образный сердечник от французского инвертора 1978 года. Но искать надо сердечник с минимальным содержанием марганца и никеля, а кремний должен быть в пределах 3%. Тогда халявы много будет. Авторезонанс получится. Трансформатор может самостоятельно заработать. Раньше были такие пластины Ш-образные на которых как-будто кристаллы нарисованы. А сейчас появились мягкие пластины, они не хрупкие, в отличие от старого железа, а мягкие и не ломаются. Вот такое старое железо для трансформатора самое оптимальное.

Если делать на торе, то тор нужно в двух местах распиливать, чтобы потом стяжку сделать. Шлифовать распиленный зазор нужно очень хорошо

На Ш-образном 30кВт-ном трансформаторе у меня получился зазор 6 мм, если 1 кВт-ный - то зазор будет где-то 0,8-1,2 мм. В качестве прокладки картон не подойдет. Магнитострикция его раздолбает. Лучше брать стеклотекстолит

Первой мотается обмотка, которая идет на нагрузку, она и все остальные мотаются на центральном стержне Ш-образного трансформатора. Все обмотки мотаются в одну сторону

Подбор конденсаторов для резонансной обмотки лучше делать магазином конденсаторов. Ничего сложного. Нужно добиться, чтобы железо хорошо рычало, т.е возник ферро-резонанас. Не индукционный эффект между емкость и катушкой, а чтоб железо между ними работало хорошо. Железо должно работать и накачивать энергию, сам по себе резонанс не качает, а железо является стратегическим устройством в этом устройстве.

Напряжение в моей резонансной обмотке было 400 В. Но чем больше - тем лучше. По поводу резонанса - нужно соблюдение реактивных сопротивлений между индуктивностью и емкостью, чтобы они были равны. Это та точка, где и когда возникает резонанс. Можно еще сопротивление добавить последовательно.

Из сети идет 50 Гц, которые возбуждают резонанс. Происходит увеличение реактивной мощности, далее с помощью зазора на обкладке в съемной катушке мы превращаем реактивную мощность в активную.

В этом случае я просто собирался упростить схему и перейти от 2х трансформаторной или 3х трансформаторной схемы с обратной связью к дроссельной связи. Вот и упростил до такого варианта, который еще и работает. 30 кВт-ный работает, но нагрузку я могу снимать только 20 кВт, т.к. все остальное - для накачки. Если я буду больше энергии забирать из сети, то он и отдавать будет больше, но уменьшаться будет халява.

Следует назвать еще одно неприятное явление, связанное с дросселями, - все дроссели при работе на частоте 50 Гц создают гудящий звук разной интенсивности. По уровню производимого шума дроссели делятся на четыре класса: с нормальным, пониженным, очень низким и особо низким уровнем шума (в соответствии с ГОСТ 19680 они маркируются буквами Н, П, С и А).

Шум от сердечника дросселя создается магнитострикцией (изменением формы) пластин сердечника, когда магнитное поле проходит через них. Этот шум также известен, как холостой шум, т.к. он не зависит от нагрузки, подаваемой на дроссель или трансформатор. Шум нагрузки возникает только у трансформаторов, к которым подключается в нагрузка, и он добавляется к холостому шуму (шуму сердечника). Этот шум вызывается электромагнитными силами, связанными с рассеиванием магнитного поля. Источником данного шума являются стенки корпуса, магнитные экраны, и вибрация обмоток. Шумы, вызываемые сердечником и обмотками, находятся, в основном, в полосе частот 100-600 Hz.

Магнитострикция имеет частоту вдвое выше частоты подаваемой нагрузки: при частоте 50 Hz, пластины сердечника вибрируют с частотой 100 раз в секунду. Более того, чем выше плотность магнитного потока, тем выше частота нечетных гармоник. Когда же резонансная частота сердечника совпадает с частотой возбуждения, то уровень шума увеличивается еще больше

Известно, что если через катушку протекает большой ток, то материал сердечника насыщается. Насыщение сердечника дросселя может привести к увеличению потерь в материале сердечника. При насыщении сердечника его магнитная проницаемость уменьшается, что приводит к уменьшению индуктивности катушки.

В нашем случае сердечник катушки индуктивности выполнен с воздушным диэлектрическим зазором на пути магнитного потока. Сердечник с воздушным зазором позволяет:

  • исключить насыщение сердечника,
  • уменьшить в сердечнике потери мощности,
  • увеличить ток в катушке и т.д.
  • Выбор дросселя и Характеристики сердечника. Магнитные материалы сердечника состоят из маленьких магнитных доменов (размерами порядка нескольких молекул). Когда внешнее магнитное поле отсутствует, эти домены ориентированы случайным образом. При появлении внешнего поля домены стремятся выравняться по его силовым линиям. При этом происходит поглощение части энергии поля. Чем сильнее внешнее поле, тем больше доменов полностью выравниваются по нему. Когда все домены окажутся ориентированы по силовым линиям поля, дальнейшее увеличение магнитной индукции не будет влиять на характеристики материала, т.е. будет достигнуто насыщение магнитопровода дросселя. По мере того как напряжённость внешнего магнитного поля начинает снижаться, домены стремятся вернуться в первоначальное (хаотичное) положение. Однако некоторые домены сохраняют упорядоченность, а часть поглощённой энергии, вместо того чтобы вернуться во внешнее поле, преобразуется в тепло. Это свойство называется гистерезисом. Потери на гистерезис являются магнитным эквивалентом диэлектрических потерь. Оба вида потерь происходят из-за взаимодействия электронов материала с внешним полем. http:// issh.ru/ content/ impulsnye-istochniki-pitanija/ vybor-drosselja/ kharakteristiki-serdechnika/ 217/

    Расчет воздушного зазора в дросселе не очень точен, т.к. данные производителей о стальных магнитных сердечниках неточны (обычно погрешность составляет +/- 10%). Программа схемотехнического моделирования Micro-cap позволяет довольно точно рассчитать все параметры катушек индуктивности и магнитные параметры сердечника http://www.kit-e.ru/ articles/ powerel/ 2009_05_82.php

    Влияние воздушного зазора на добротность Q дросселя со стальным сердечником. Если частота напряжения, приложенного к дросселю, не изменяется и с введением воздушного зазора в сердечник амплитуда напряжения увеличивается так, что магнитная индукция поддерживается неизменной, то и потери в сердечнике будут сохраняться такими же. Введение воздушного зазора в сердечник вызывает увеличение магнитного сопротивления сердечника обратнопропорционально m∆ (см формулу 14-8) Следовательно для получения той же магнитной индукции намагничивания ток должен соответственно увеличиваться. Добротность Q дросселя можно определять по уравнению

    Для получения большей величины добротности в сердечник дросселя обычно вводят воздушный зазор, увеличивая тем самым ток Im настолько, чтобы выполнялось равенство 14-12. Введение воздушного зазора уменьшает индуктивность дросселя, то высокое значение Q достигается обычно за счет снижения индуктивности (ссылка)

    Отопление от Андреева на резонансном дросселе с Ш-образным сердечником от трансформатора и лампах ДРЛ

    Если использовать лампу ДРЛ, то выделяемой ей тепло можно отбирать. Схема подключения ламп ДРЛ простая.

    Трансформатор, мощностью 3 кВт имеет: три первичные обмотки, три вторичные обмотки и одну резонансную, а также зазор.

    Каждую лампу ДРЛ в первичных обмотках я соединил последовательно. Потом настраивал каждую лампу в резонанс при помощи конденсаторов.

    На выходе трансформатора у меня три выходных обмотки. К ним я тоже последовательно подсоединил лампы и тоже их настраивал в резонанс при помощи блоков из конденсаторов.

    Потом к резонансной обмотке подключал конденсаторы и последовательно с этими конденсаторами я умудрился еще три лампы подключить. Каждая лампа по 400 Вт.

    Я работал с ртутными лампами ДРЛ, а натриевые лампы НаД трудно зажечь. У ртутной лампы начало зажигания около 100 Вольт.

    От искового промежутка в лампе ДРЛ генерируется более высокая частота, которая моделирует частоту сети 50 Гц. Получаем ВЧ модуляцию при помощи искового промежутка лампы ДРЛ для НЧ сигнала в 50Гц от сети.

    Т.о. три лампы ДРЛ потребляя энергию выдают энергию еще для 6 ламп

    Но подобрать резонанс контура - это одно, а подобрать резонанс металла сердечника - это другое. До этого ещё мало кто дошел. Поэтому когда Тесла демонстрировал свою резонансную разрушающую установку, то когда он подбирал частоту для нее, то на всем проспекте начало разворачиваться землятресение. И тогда Тесла молотком разбил свое устройство. Это пример того, как малым устройством можно разрушить большое здание. В нашем случае нужно заставить метал сердечника вибрировать на частоте резонанса, например как от ударов в колокол.

    Основа для ферромагнитного резонанса из книги Уткина "Основы теслатехники"

    Когда ферромагнитный материал помещается в постоянное магнитное поле (например, подмагничивание сердечника трансформатора постоянным магнитом), то сердечник может поглощать внешнее переменное электромагнитное излучение в направлении, перпендикулярном к направлению постоянного магнитного поля на частоте прецессии доменов, что приведет к ферромагнитному резонансу на этой частоте. Приведенная формулировка является наиболее общей и не отражает всех особенностей поведения доменов. Для жестких ферромагнетиков существует явление магнитной восприимчивости, когда способность материала намагничиваться или размагничиваться зависит от внешних воздействующих факторов (например, ультразвука или электромагнитных высокочастотных колебаний). Это явление широко используется при записи в аналоговых магнитофонах на магнитной пленке и называется "высокочастотное подмагничивание". Магнитная восприимчивость при этом резко возрастает. Т.е, намагнитить материал в условиях высокочастотного подмагничивания проще. Это явление можно также рассматривать как разновидность резонанса и группового поведения доменов.

    Это основа для усиливающего трансформатора Тесла.

    Вопрос: какая польза от ферромагнитного стержня в устройствах свободной энергии?

    Ответ: ферромагнитный стержень может изменять намагниченность своего материала вдоль направления магнитного поля без необходимости использования мощных внешних сил.

    Вопрос: правда ли, что резонансные частоты для ферромагнетиков находятся в диапазоне десятков гигагерц?

    Ответ: да, частота ферромагнитного резонанса зависит от внешнего магнитного поля (высокое поле = высокая частота). Но в ферромагнетиках можно получить резонанс без применения какого-либо внешнего магнитного поля, это так называемый "естественный ферромагнитный резонанс". В этом случае магнитное поле определяется внутренней намагниченностью образца. Здесь частота поглощения находится в широкой полосе, из-за большой вариации в возможных условиях намагничивания внутри, и поэтому вы должны использовать широкую полосу частот, чтобы получить ферромагнитный резонанс для всех условий. Здесь ХОРОШО ПОДХОДИТ ИСКРА на искровом разряднике.


    Обыкновенный трансформатор. Никаких хитрых намоток (бифиляром, встречных...) Обыкновенные намотки, кроме одного - отсутствие влияния вторичной цепи на первичную. Это готовый генератор свободной энергии. Ток, который пошёл на насыщение сердечника получили и во вторичной цепи т.е. с прибавкой в 5 раз. Принцип работы трансформатора как генератора свободной энергии: дать ток на первичную для насыщения сердечника в его нелинейном режиме и отдать ток на нагрузку во вторую четверть периода без влияния ее на первичную цепь трансформатора. В обыкновенном трансформаторе это линейный процесс, т.е. мы получаем ток в первичной цепи путем изменения индуктивности во вторичной подключением нагрузки. В данном трансформаторе этого нет, т.е мы без нагрузки получаем ток для насыщения сердечника. Если мы отдали ток 1 А, то мы его и получим на выходе, но только с коэффициентом трансформации таким - какой нам нужен. Все зависит от размеров окна трансформатора. Наматывает вторичную на 300 В или на 1000 В. На выходе получите напряжение с тем током, который вы подали на насыщение сердечника. В первую четверть периода у нас сердечник получает ток на насыщение, во вторую четверть периода этот ток забирает нагрузка через вторичную обмотку трансформатора.


    Частота в районе 5000 Гц на этой частоте сердечник близок к своему резонансу и первичная перестает видеть вторичку. На видео показываю как замыкаю вторичную, а на блоке питания первички не происходит никаких изменений. Данный эксперимент лучше синусом проводить, а не меандром. Вторичную можно мотать хоть на 1000 Вольт, ток во вторичной будет максимум тока, протекающего в первичной. Т.е. если в первичке 1 А, то во вторичной можно выжать тоже 1 А тока с коэффициентом трансформации, например 5. Далее пробую сделать резонанс в последовательном колебательном контуре и загнать его на частоту сердечника. Получится резонанс в резонансе, как показывал Акула0083

    Коммутационный способ возбуждения параметрического резонанса электрических колебаний и устройство для его осуществления.

    Устройство на схеме относится к автономным источникам электропитания, и может найти применение в промышленности, в бытовой технике и на транспорте. Техническим результатом является упрощение и снижение стоимости изготовления.

    Все источники электропитания по своей сути являются преобразователями различных видов энергии (механической, химической, электромагнитной, ядерной, тепловой, световой) в электрическую энергию и реализуют только эти затратные способы получения электрической энергии.

    Эта электрическая схема позволяет создание на основе параметрического резонанса электрических колебаний автономного источника электропитания (генератора), не сложного по конструкции и не дорогого по стоимости. Под автономностью в подразумевается полная независимость этого источника от воздействия сторонних сил или привлечения других видов энергии. Под параметрическим резонансом понимается явление непрерывного возрастания амплитуд электрических колебаний в колебательном контуре при периодических изменениях одного из его параметров (индуктивности или емкости). Эти колебания происходят без участия внешней электродвижущей силы.

    Резонанный трансформатор Степанова А.А. является разновидностью резонансного усилителя мощности. Работа резонансного усилителя состоит:

    1) усиление в высокодобротном колебательном контуре (резонаторе) при помощи параметра Q (добротность колебательного контура), энергии, получаемой от внешнего источника (сети 220 В или генератора накачки);

    2) снятие усиленной мощности с раскачанного колебательного контура в нагрузку так, чтобы ток в нагрузке не влиял (в идеале) или слабо влиял (в реале) на ток в колебательном контуре (Эффект Демона Тесла).

    Несоблюдение одного из этих пунктов не позволит "извлечь из резонансного контура СЕ". Если выполнение 1 пункта особых проблем не вызывает, то выполнение пункта 2 является задачей технически сложной.

    Существуют приёмы, позволяющие ослабить влияние нагрузки на ток в Резонансном колебательном контуре:

    1) использование ферромагнитного экрана между первичкой и вторичкой трансформатора, как в патенте Тесла № US433702;

    2) использование намотки бифиляром Купера. Индуктивные бифилярки Теслы часто путают с безиндуктивными бифилярками Купера, где ток в 2х соседних витках течёт в разных направлениях (и которые, по сути, являются статическими усилителями мощности и рождают ряд аномалий, в том числе и антигравитационные эффекты) Видео по ссылке В случае односторонней магнитной индукции, подключение нагрузки к вторичной катушке не влияет на ток потребления первичной катушки.

    Трансформатор, доработанный для решения этой задачи, изображен на фиг.1 с различными типами магнитопроводов: a - стержневой, b - броневой, с - на ферритовых чашках. Все проводники первичной обмотки 1 находятся только с внешней стороны магнитопровода 2. Его участок внутри вторичной обмотки 3 всегда замкнут огибающей магнитной цепью.

    В штатном режиме при подаче переменного напряжения на первичную обмотку 1 весь магнитопровод 2 намагничивается вдоль ее оси. Примерно половина потока магнитной индукции проходит через вторичную обмотку 3, вызывая на ней выходное напряжение. При обратном включении переменное напряжение подается на обмотку 3. Внутри нее возникает магнитное поле, которое замыкается огибающей ветвью магнитопровода 2. В итоге, изменение суммарного потока магнитной индукции через обмотку 1, опоясывающую весь магнитопровод, определяется только слабым рассеянием за его пределы.

    5) использование "ферроконцентраторов" - магнитопроводов с переменным сечением, в которых магнитный поток, создаваемый первичкой, при прохождении по магнитопроводу, сужается (концентрируется) перед прохождением внутри вторички;

    6) множество других технических решений, например патент Степанова А.А.(N° 2418333) или приёмы, описанные у Уткина в "Основах Теслатехники". Можно так же посмотреть описание трансформатора Е.М.Ефимова (http:// www.sciteclibrary.ru/ rus/ catalog/ pages/ 11197.html, http:// www.sciteclibrary.ru/ rus/ catalog/ pages/ 11518.html), статью А.Ю. Далечина "Трансформатор реактивной энергии" или "Резонансный усилитель мощности тока промышленной частоты" Громова Н.Н.

    7) Однонаправленный трансформатор видео

    Эти изобретения сводятся к решению одной задачи - "сделать, чтобы энергия из первички во вторичку передавалась полностью, а обратно не передавалась вообще" - обеспечить режим одностороннего перетекания энергии.

    Решение этой задачи - ключ к построению резонансных сверхединичных СЕ-трансформаторов.

    Видимо Степанов придумал ещё один способ снятия энергии с резонансного колебательного контура - на этот раз с помощью той самой странной цепи, состоящей из трансформатора тока и диодов. .

    Колебательный контур в режиме резонанса токов, является усилителем мощности.

    Большие токи, циркулирующие в контуре, возникают за счет мощного импульса тока от генератора в момент включения, когда заряжается конденсатор. При значительном отборе мощности от контура эти токи «расходуются», и генератору вновь приходится отдавать значительный ток подзарядки

    Колебательный контур с низкой добротностью и катушкой небольшой индуктивности слишком плохо "накачивается" энергией (запасает мало энергии), что понижает КПД системы. Также катушка с маленькой индуктивностью и на низких частотах обладает малым индуктивным сопротивлением, что может привести к "короткому замыканию" генератора по катушке, и вывести генератор из строя.

    Добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью плохо «запасает» энергию. Для повышения добротности колебательного контура используют несколько путей:

    Повышение рабочей частоты: из формул видно, что выходная мощность прямо пропорциональна частоте колебаний в цепи (количеству импульсов в секунду) Если вдвое увеличить частоту импульсов, то выходная мощность увеличивается вдвое

    По возможности увеличить L и уменьшить C. Если увеличить L с помощью увеличения витков катушки или увеличения длины провода нельзя, используют ферромагнитные сердечники или ферромагнитные вставки в катушку; катушка обклеивается пластинками из ферромагнитного материала и т.п.

    Рассмотрите временные характеристики последовательного LC контура. В резонансе ток отстает от напряжения на 90°. Токовым трансформатором я использую токовую состовляющую, таким образом я не вношу изменения в контур, даже при полной нагрузке токового трансформатора. При изменении нагрузки, происходит компенсация индуктивностей (другого слова не подобрал) контур сам себя подстраивает не давая уйти с резонансной частоты.

    К примеру, катушка на воздухе 6 витков медной трубки 6 мм2, диаметр каркаса 100мм, и ёмкость в 3 мкф имеет резонансную частоту примерно 60 кГц. На этом контуре можно разогнать до 20 кВт реактива. Соответственно токовый трансформатор должен иметь габаритную мощность не менее 20 кВт. Можно применять что угодно. Кольцо - хорошо, но при таких мощностях больше вероятность ухода сердечника в насыщение, поэтому необходимо вводить зазор в сердечник , а это проще всего с ферритами от ТВСа. На этой частоте один сердечник способен рассеять около 500 Вт, значит необходимо 20000\500 не менее 40 сердечников.

    Важное условие - создать резонанс в последовательном LC контуре. Процессы при таком резонансе хорошо описаны. Важный элемент - это токовый трансформатор. Его индуктивность должна быть не более 1/10 индуктивности контура. Если больше, резонанс будет срываться. Следует также учесть коэффициенты трансформации, согласующего и токового трансформаторов. Первый рассчитывается исходя из импедансов (полных сопротивлений) генератора и колебательного контура. Второй зависит от напряжения развиваемого в контуре. На предыдущем примере в контуре 6 витков развилось напряжение в 300 вольт. Получается на виток 50 вольт. Токовый транс использует 0,5 витков, значит в его первичке будет 25 вольт, следовательно вторичка должна содержать 10 витков, для достижения напряжения в 250 вольт на выходе.

    Все рассчитывается по классическим схемам. Как вы будете возбуждать резонансный контур неважно. Важная часть - это согласующий трансформатор, колебательный контур, и токовый трансформатор для съема реактивной энергии.

    Если вы хотите данный эффект на трансформаторе Тесла (далее ТТ) реализовать. Вам необходимо знать и иметь опыт по построению ВЧ цепей. В ТТ при 1/4 волновом резонансе, так же происходит разделение тока от напряжения на 90°. Сверху напряжение, снизу ток. Если проведете аналогию с представленной схемой и ТТ, увидите сходство, как накачка так и съем происходит на стороне возникновения токовой составляющей. Аналогично работает и устройство Смита. Поэтому не рекомендую начинать с ТТ или Смита будучи не опытным. А данное устройство можно буквально на коленке собрать, при этом имея только один тестер. Как правильно в одном из постов заметила lazj "Капанадзе осциллограф из-за угла видел."

    Таким образом происходит модуляция несущей. А такое решение - транзисторы ведь с однополярным током могут работать. Если на них подать не выпрямленное, то пройдет только одна полуволна.

    модуляция нужна для того, чтобы потом не мучиться с преобразованием в 50 Гц стандарт.

    Для получения на выходе синуса 50 гц. Без неё потом можно будет питать только активную нагрузку (лампочки накаливания, тены...). Двигатель, или трансформатор на 50 гц работать не будут, без такой модуляции.

    Задающий генератор я обозначил прямоугольником. Он стабильно выдает частоту, на которой резонирует LC контур. Пульсирующее изменение напряжения (синус) подается только на выходные ключи. Резонанс колебательного контура от этого не срывается, просто в каждый момент времени в контуре крутиться больше или меньше энергии, в такт синуса. Это как если качели толкать, с большей или меньшей силой, резонанс качелей не меняется, меняется только энергия.

    Резонанс можно сорвать только нагрузив его непосредственно, т к меняются параметры контура. В данной схеме нагрузка не влияет на параметры контура, в ней происходит автоподстройка. Нагружая токовый трансформатор, с одной стороны меняются параметры контура, а с другой стороны меняется магнитная проницаемость сердечника трансформатора, уменшая его индуктивность. Таким образом для резонанского контура нагрузка "невидна". И резонансный контур как совершал свободные колебания так и продолжает совершать. Меняя напряжение питания ключей (модуляция), меняется только амлитуда свободных колебаний и все. Если есть осциллограф и генератор, проведите эксперимент, с генератора подайте на контур частоту резонанса контура, затем меняйте амплитуду входного сигнала. И увидете что нет никакого срыва.

    Да, согласующий трансформатор и трансформатор тока построены на ферритах, резонансный контур воздушный. Чем больше в нем витков тем выше добротность, с одной стороны. А с другой выше сопротивление, что снижает конечную мощность, потому как основная мощность уходит на нагрев контура. Поэтому следует искать компромис. По поводу добротности. Даже имея добротность 10 при 100 Вт входной мощности 1000 Вт будет реактива. Из них 900 Вт можно снять. Это при идиальных условиях. В реале 0,6-0,7 от реактива.

    Но это все мелочи, по сравнению с тем, что не надо закапывать радиатор отопления в землю и париться с заземлением! А то Капанадзе пришлось даже на острове разориться на устройство заземления! А оно оказывается и вовсе не нада! Реактивная энергия прет и без рабочего заземления. Это бесспорно. А вот со сьемным трансформатором тока - придется повозится... Не так все просто. Обратное влияние имеется. Степанов как-то это решил, в патенте у него там диоды для этой цели нарисованы. Хотя наличие диодов у Степанова каждый трактует по-своему.

    Степанов в Питере запитывал станки по следующей схеме. Его схема была проста, но мало понимаема

    Трансформатор с короткозамкнутым витком генерирует мощное переменное магнитное поле. Берём феромагнитный стержень с как можно большей проницаемостью, лучше трансформаторное железо, пермаллой, и т.д. Для более яркого проявления эффекта мотаем на нем первичку с подобранным активным максимальным сопротивлением так, чтобы она не сильно нагревалась при питании от генератора в режиме полного КОРОТКОГО ЗАМЫКАНИЯ. После намотки первички делаем вторичку как обычно, по всей поверхности первички, только наглухо замкнутую.

    Можно сделать замкнутый виток в форме трубки длиной с первичку. При включении трансформатора такой короткозамкнутый трансформатор генерирует мощное переменное магнитное поле. При этом сколько бы мы не приставляли по торцам дополнительных сердечников с замкнутыми обмотками - потребление трансформатора не увеличивается. Зато с каждого приставленного сердечника с обмоткой мы имеем нехилую ЭДС. Вторичку основного трансформатора лучше использовать при максимальной нагрузке, чем больше нагрузка, тем больше поле, чем больше поле, тем больше ЭДС на дополнительном сердечнике.

    СКРЫТЫЕ ПОДРОБНОСТИ РАБОТЫ ТРАНСФОРМАТОРА С КОРОТКОЗАМНУТЫМ ВИТКОМ.

    Вторичной обмоткой магнитное поле вообще не индуцируется. В ней ток как бы вторичен и выполняет роль \СМАЗКИ\ для тока в первичке. Чем лучше смазка, тем больше ток в первичке, но максимум тока упирается в активное сопротивление первички. Отсюда получается, что магнитное поле МП можно брать от короткозамкнутого КЗ трансформатора для его дальнейшего усиления МП- размножения МП- дублирования МП феромагнетиками.

    При поднесении к основному сердечнику с измеряемой обмоткой бокового дополнительного сердечника индуктивность растёт, при поднесении дополнительного сердечника с КЗ обмоткой индуктивность падает. Далее, если индуктивности на основном сердечнике падать уже некуда (близко к активному сопротивлению), то поднесение дополнительного сердечника с корокозамкнутой КЗ обмоткой, никак не влияет на ток в первичке, но поле-то есть!

    Трансформатор с короткозамкнутым КЗ витком.Опыт

    Отсюда есть ток в дополнительной обмотке. Так вытаскивается магнитная энергия, и часть ее конвертируется в ток. Это всё очень приближенно, т.е. мы сначала натыкаемся на убытки К.З. в трансформаторе и на этом останавливаемся, не обращая внимания на возросшее магнитное поле согласно току в первичке, а поле - это то, что нам надо.

    Объяснение. Берём обычный стержневой электромагнит, запитываем положенным ему напряжением, видим плавное нарастание тока и магнитного поля, в конце концов ток постоянен и магнитное поле тоже. Теперь первичку окружаем сплошным проводящим экраном, подключаем снова, видим нарастание тока и магнитного поля до тех же значений, только раз в 10-100 быстрее. Можно представить во сколько раз можно повысить и частоту управления таким магнитом. Также можно сравнить крутизну фронта магнитного поля в этих вариантах, а заодно посчитать затраченную энергию источника для достижения предельного значения магнитного поля. Так что думаю стоит забыть о магнитном поле при К.З. вторички-экрана, его на самом деле нет. Ток во вторичке - это чисто компенсатор, пассивный процесс. Ключевой момент в транс-генераторе это трансформация тока в магнитное поле, усиленное многократно свойствами сердечника..

    Трансформатор с короткозамкнутым витком еще и для отопления. Все знают об импульсе обратной индукции: если мы хорошую индуктивность отключаем от источника, то получим выброс напряжения и соответственно тока. Что на это говорит сердечник - а ничего! Магнитное поле все равно стремительно убывает и надо бы вводить понятие активного и пассивного тока. Пассивный ток не образует своего магнитного поля, если конечно не выводить линии тока относительно магнитного поля сердечника. В противном случае у нас бы получился \вечный электромагнит\,. Возьмем конструктив, \как описано свидетелем конструкции МЕЛЬНИЧЕНКО\. Стержень, а на стержне по торцам две первички, сверху на них алюминиевые кольца (замкнутые полностью или даже с запасом закрывающие обмотку) - так сказать компенсаторы. Съёмная обмотка посредине. Остаётся проверить: был ли стержень сплошным или составным из трёх частей, под первичкой и под съёмной обмоткой? Боковые первички с замкнутыми экранами будут генераторами магнитного поля, а центральная часть сердечника, или отдельный сердечник генерирует своё магнитное поле, которое съёмной катушкой конвертируется в ток. Две катушки по торцам - видимо для создания более равномерного поля в центральной части. Можно сделать и так: Две катушки по торцам - съемные, и посередине экранированная, генераторная, какая из этих конструкций лучше, покажет опыт. Никаких высокоомных экранов, никаких конденсаторов. Ток в экране является реверсом для тока в первичке, а заодно и компенсатором против изменения поля в генерирующих стержнях (от нагрузки в съёмных). Да, съёмная обмотка обычная индуктивная. ТРАНС_ГЕНЕРАТОР не является вечным двигателем, он распределяет энергию среды, но собирает её очень эффективно с помощью поля, и выдает в виде тока - ток всё обратно переводит в пространство, в итоге мы никогда не нарушаем баланс энергий в замкнутом объеме, а пространство специально устроено так, чтобы всё сгладить и равномерно распределить. Самая простая конструкция: стержень-первичка-экран-вторичка _ сколько хочешь. Токи в экране пассивные, снимай не хочу. Так же будут работать типовые трансформаторы, снимаем вторичку, ставим экран, снова вторичка, но побольше, до заполнения окна магнитопровода. Получаем трансформатор КУЛДОШИНА. Но если окно маленькое, может даже не получиться оправдать все затраты. ЧАСТОТУ также надо подбирать экспериментально для максимального КПД. От частоты сильно зависит эффективность. Повысим частоту - сохраним красивое отношение вольт на виток. Можно повысить скважность. Если генератор просаживается, почему просаживается - нет мощности. Надо рассчитывать мощность генератора.

    чтобы не париться включи в розетку. Там напряжение хорошо держится. Потери само собой, рассчитывайте силу тока первички, так чтобы зря энергия не тратилась. То есть, чтобы сердечник насыщался на максимальном токе. А вторичек можно намотать, от жадности сколько хочешь. Ток ведь не увеличивается в первичке. ИМПУЛЬС тока проходит в первичке. При этом она не индуктивная, то есть поле создаётся быстро. А есть поле - есть ЭДС. А так как нет индуктивности, то частоту смело повышаем в 10 раз.

    ЭКРАН делает трансформатор почти полностью не индуктивным, в этом ВСЯ СОЛЬ.

    Эффект найден на стержневом электромагните. Он был запитан от разных источников. Даже импульсами с кондёров. Магнитное поле нарастает мгновенно. Т.е. со вторичной обмотки надо собрать как можно больше энергии.

    В трансформаторе с КЗ экраном практически нет ни одной индуктивной обмотки. Поле от сердечника свободно проникает через любую толщу вторичной съёмной обмотки.

    Виртуально уберите из конструкции трансформатора первичку и экран....

    Это можно сделать, так как на экран и первичку никакие манипуляции со вторичкой в смысле нагрузки никак не влияют. Вы получите стержень из которого идёт генерация переменного магнитного поля, которое никак не остановить. Можете намотать кучу вторичного толстого провода и во всей массе проводника будет ток. Часть его пойдет на восстановление энергии источника, а остальное - ваше. Только опыт покажет вам, что поле, созданное первичкой и стержнем, не остановить никаким экраном, да хоть засунуть всё в проводящий цилиндр вместе с источником и генератором - поле спокойно выходит, и оно будет наводить токи в обмотках сверху цилиндров.

    ЭКРАН ДАЕТ ВЫИГРЫШ В ТОМ, ЧТО СВОДИТ ИНДУКТИВНОСТЬ ВСЕХ ОБМОТОК НА НЕТ, ДАЁТ ВОЗМОЖНОСТЬ РАБОТАТЬ НА ВЫСОКОЙ ЧАСТОТЕ С ТОЙ ЖЕ АМПЛИТУДОЙ ПОЛЯ. А ЭДС ЗАВИСИТ ОТ СКОРОСТИ ИЗМЕНЕНИЯ И СИЛЫ ПЕРЕМЕННОГО МАГНИТНОГО ПОЛЯ.

    Пока нет экрана, никакой трансформатор никогда не заставит феромагнетик отдавать свою энергию по простой причине: энергию отдаёт первичка, а вот когда первичка уже не может отдавать больше своей нормы, только тогда начнётся откачка внутренней энергии ферромагнетика.

    Экран - нулевая точка. Нет экрана - эту точку никогда не перейти. Во вторичке хоть какого объёма все электроны просто плывут как бы по течению магнитного поля. Они плывут пасивно, поля не обгоняют, индуктивности нигде нет. Этот ток называется холодным током . Сердечник будет охлаждаться, если со вторички забирать больше энергии, чем даёт первичка, так же будет забираться энергия всего, что ближе к сердечнику: провода, воздух.

    Вторичка может быть любого объема. ВЕЗДЕ БУДЕΤ ТОК!

    Трансформатор Соколовского МЕ-8_2 Использование обратной ЭДС в трансформаторе с КЗ витком https://youtu.be/HH8VvFeu2lQ Обратная ЭДС катушки индуктивности от Сергей Дейна https://youtu.be/i4wfoZMWcLw

    Электричество с каждым днем дорожает. И многие хозяева рано или поздно начинают задумываться об альтернативных источниках энергии. Предлагаем в качестве образцов безтопливные генераторы Тесла, Хендершота, Романова, Тариеля Канападзе, Смита, Бедини, принцип работы агрегатов, их схема и как сделать устройство своими руками.

    Как сделать бестопливный генератор своими руками

    Многие хозяева рано или поздно начинают задумываться об альтернативных источниках энергии. Предлагаем рассмотреть, что такое автономный бестопливный генератор Тесла, Хендершота, Романова, Тариеля Канападзе, Смита, Бедини, принцип работы агрегата, его схема и как сделать устройство своими руками.

    Обзор генераторов

    При использовании безтопливного генератора, двигатель внутреннего сгорания не требуется, поскольку устройство не должно преобразовывать химическую энергию топлива в механическую, для выработки электроэнергии. Данный электромагнитный прибор работает таким образом, что электричество, вырабатываемое генератором рециркулируют обратно в систему по катушке.

    Фото — Генератор Капанадзе

    Обычные электрогенераторы работают на основе:
    1. Двигателя внутреннего сгорания, с поршнем и кольцами, шатуном, свечами, топливным баком, карбюратором, … и
    2. С использованием любительских двигателей, катушек, диодов, AVR, конденсаторами и т.д.

    Двигатель внутреннего сгорания в бестопливных генераторах заменен электромеханическим устройством, которое принимает мощность от генератора и используя такую ​​же, преобразует её в механическую энергию с эффективностью более 98%. Цикл повторяется снова и снова. Таким образом, концепция здесь заключается в том, чтобы заменить двигатель внутреннего сгорания, который зависит от топлива с электромеханическим устройством.

    Фото — Схема генератора

    Механическая энергия будет использоваться для приведения в действие генератора и получения тока, создаваемого генератором для питания электромеханического прибора. Генератор без топлива, который используется для замены двигателя внутреннего сгорания, сконструирован таким образом, что использует меньше энергии на выходе мощности генератора.

    Видео: самодельный бестопливный генератор:

    Скачать видео

    Генератор Тесла

    Линейный электрогенератор Тесла является основным прототипом рабочего прибора. Патент на него был зарегистрирован еще в 19 веке. Главным достоинством прибора является то, что его можно построить даже в домашних условиях с использованием солнечной энергии. Железная или стальная пластина изолируется внешними проводниками, после чего она размещается максимально высоко в воздухе. Вторую пластину размещаем в песке, земле или прочей заземленной поверхности. Провод запускается из металлической пластины, крепление производится с конденсатором на одной стороне пластины и второй кабель идет от основания пластины к другой стороне конденсатора.

    Фото — Бестопливный генератор тесла

    Такой самодельный бестопливный механический генератор свободной энергии электричества в теории полностью работающий, но для реального осуществление плана лучше использовать более распространенные модели, к примеру изобретателей Адамса, Соболева, Алексеенко, Громова, Дональда, Кондрашова, Мотовилова, Мельниченко и прочих. Собрать рабочий прибор можно даже при перепланировке какого-либо из перечисленных устройств, это выйдет дешевле, нежели самому все подсоединять.

    Кроме энергии Солнца, можно использовать турбинные генераторы, которые работают без топлива на энергии воды. Магниты полностью покрывают вращающиеся металлические диски, также к прибору добавляется фланец и самозапитанный провод, что значительно снижает потери, благодаря этому данный теплогенератор работает более эффективно, чем солнечный. Из-за высоких асинхронных колебаний этот ватный бестопливный генератор страдает от вихревой электроэнергии, так что его нельзя использовать в автомобиле или для питания дома, т.к. на импульсе могут сгореть двигатели.

    Фото — Бестопливный генератор Адамса

    Но гидродинамический закон Фарадея также предлагает использовать простой вечный генератор. Его магнитный диск разделен на спиральные кривые, которые излучают энергию из центра к внешнему краю, уменьшая резонанс.

    В данной высоковольтной электрической системе, если есть два витка рядом расположенных, электроток передвигается по проводу, ток, проходящий через петлю, будет создавать магнитное поле, которое будет излучаться против тока, проходящего через вторую петлю, создавая сопротивление.

    Как сделать генератор

    Существует два варианты выполнения работы:


    1. Сухой способ;

    2. Мокрый или масляный;

    Мокрый метод использует аккумулятор, в то время как сухой метод обходится без батареи.

    Пошаговая инструкция как собрать электрический бестопливный генератор. Чтобы сделать мокрый генератор бестопливного типа потребуется несколько компонентов:


    • аккумулятор,

    • зарядное устройство подходящего калибра,

    • Трансформатор переменного тока

    • Усилитель мощности.

    Подключите трансформатор переменного тока в постоянную сеть к Вашей батарее и усилителю мощности, а затем подсоедините в схему зарядное устройство и датчик для расширения, далее его нужно подключить обратно в батарею. Зачем нужны эти компоненты:


    1. Батарея используется для хранения и накопления энергии;

    2. Трансформатор используется для создания постоянных сигналов ток;

    3. Усилитель поможет увеличить подачу тока, потому что мощность от аккумулятора только 12В или 24В, в зависимости от батареи.

    4. Зарядное устройство необходимо для бесперебойной работы генератора.

    Фото — Альтернативный генератор

    Сухой генератор работает на конденсаторах. Чтобы собрать такой прибор нужно подготовить:


    • Прототип генератора

    • Трансформатор.

    Это производство является наиболее совершенным способом сделать генератор, потому что его работа может длиться годами, как минимум 3 года без подзарядки. Эти два компонента нужно объединить при помощи незатухающих специальных проводников. Мы рекомендуем использовать сварку, чтобы создать наиболее прочное соединение. Для контроля работы используется динатрон, просмотрите видео как правильно соединять проводники.

    Устройства на трансформаторе более дорогие, но являются гораздо эффективнее, нежели аккумуляторные. Как прототип Вы можете взять модель free energy, kapanadze, torrent, марка Хмельник. Такие приборы можно будет применять как мотор для электромобиля.

    Обзор цен

    На отечественному рынке самыми доступными считаются генераторы производства одесских изобретателей, БТГи БТГР. Купить такие бестопливные генераторы можно в специализированном магазине электротехники, интернет-магазинах, от завода-производителя (цена зависит от марки прибора и точки, где осуществляется продажа).

    Бестопливные новые генераторы на магните Вега на 10 кВт обойдутся в среднем от 30 000 рублей.

    Одесского завода — 20 000 рублей.

    Очень популярные Андрус обойдутся хозяевам минимум в 25 000 рублей.

    Импортные приборы марки Феррите (аналог устройства Стивена Марка) являются наиболее дорогими на отечественном рынке и стоят от 35 000 рублей, в зависимости от мощности.



     

    Возможно, будет полезно почитать: